This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul12 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B x. C ) ) = ( B x. ( A x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 2 | 1 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) x. C ) = ( ( B x. A ) x. C ) ) |
| 3 | 2 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( ( B x. A ) x. C ) ) |
| 4 | mulass | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
|
| 5 | mulass | |- ( ( B e. CC /\ A e. CC /\ C e. CC ) -> ( ( B x. A ) x. C ) = ( B x. ( A x. C ) ) ) |
|
| 6 | 5 | 3com12 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B x. A ) x. C ) = ( B x. ( A x. C ) ) ) |
| 7 | 3 4 6 | 3eqtr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B x. C ) ) = ( B x. ( A x. C ) ) ) |