This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number whose cosine is one is an integer multiple of 2 _pi . (Contributed by Mario Carneiro, 12-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coseq1 | |- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn | |- 2 e. CC |
|
| 2 | 2ne0 | |- 2 =/= 0 |
|
| 3 | divcan2 | |- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
|
| 4 | 1 2 3 | mp3an23 | |- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
| 5 | 4 | fveq2d | |- ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( cos ` A ) ) |
| 6 | halfcl | |- ( A e. CC -> ( A / 2 ) e. CC ) |
|
| 7 | cos2tsin | |- ( ( A / 2 ) e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
|
| 8 | 6 7 | syl | |- ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 9 | 5 8 | eqtr3d | |- ( A e. CC -> ( cos ` A ) = ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 10 | 9 | eqeq1d | |- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 ) ) |
| 11 | 6 | sincld | |- ( A e. CC -> ( sin ` ( A / 2 ) ) e. CC ) |
| 12 | 11 | sqcld | |- ( A e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) |
| 13 | mulcl | |- ( ( 2 e. CC /\ ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) -> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC ) |
|
| 14 | 1 12 13 | sylancr | |- ( A e. CC -> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC ) |
| 15 | ax-1cn | |- 1 e. CC |
|
| 16 | subsub23 | |- ( ( 1 e. CC /\ ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC /\ 1 e. CC ) -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
|
| 17 | 15 15 16 | mp3an13 | |- ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 18 | 14 17 | syl | |- ( A e. CC -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 19 | eqcom | |- ( ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = ( 1 - 1 ) ) |
|
| 20 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 21 | 20 | eqeq2i | |- ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = ( 1 - 1 ) <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) |
| 22 | 19 21 | bitri | |- ( ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) |
| 23 | 18 22 | bitrdi | |- ( A e. CC -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) ) |
| 24 | 10 23 | bitrd | |- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) ) |
| 25 | mul0or | |- ( ( 2 e. CC /\ ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) -> ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) ) |
|
| 26 | 1 12 25 | sylancr | |- ( A e. CC -> ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) ) |
| 27 | 2 | neii | |- -. 2 = 0 |
| 28 | biorf | |- ( -. 2 = 0 -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) ) |
|
| 29 | 27 28 | ax-mp | |- ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) |
| 30 | 26 29 | bitr4di | |- ( A e. CC -> ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 <-> ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) |
| 31 | sqeq0 | |- ( ( sin ` ( A / 2 ) ) e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( sin ` ( A / 2 ) ) = 0 ) ) |
|
| 32 | 11 31 | syl | |- ( A e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( sin ` ( A / 2 ) ) = 0 ) ) |
| 33 | 24 30 32 | 3bitrd | |- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( sin ` ( A / 2 ) ) = 0 ) ) |
| 34 | sineq0 | |- ( ( A / 2 ) e. CC -> ( ( sin ` ( A / 2 ) ) = 0 <-> ( ( A / 2 ) / _pi ) e. ZZ ) ) |
|
| 35 | 6 34 | syl | |- ( A e. CC -> ( ( sin ` ( A / 2 ) ) = 0 <-> ( ( A / 2 ) / _pi ) e. ZZ ) ) |
| 36 | 1 2 | pm3.2i | |- ( 2 e. CC /\ 2 =/= 0 ) |
| 37 | picn | |- _pi e. CC |
|
| 38 | pire | |- _pi e. RR |
|
| 39 | pipos | |- 0 < _pi |
|
| 40 | 38 39 | gt0ne0ii | |- _pi =/= 0 |
| 41 | 37 40 | pm3.2i | |- ( _pi e. CC /\ _pi =/= 0 ) |
| 42 | divdiv1 | |- ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( ( A / 2 ) / _pi ) = ( A / ( 2 x. _pi ) ) ) |
|
| 43 | 36 41 42 | mp3an23 | |- ( A e. CC -> ( ( A / 2 ) / _pi ) = ( A / ( 2 x. _pi ) ) ) |
| 44 | 43 | eleq1d | |- ( A e. CC -> ( ( ( A / 2 ) / _pi ) e. ZZ <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |
| 45 | 33 35 44 | 3bitrd | |- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |