This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leloe | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
|
| 2 | axlttri | |- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> -. ( B = A \/ A < B ) ) ) |
|
| 3 | 2 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> -. ( B = A \/ A < B ) ) ) |
| 4 | 3 | con2bid | |- ( ( A e. RR /\ B e. RR ) -> ( ( B = A \/ A < B ) <-> -. B < A ) ) |
| 5 | eqcom | |- ( B = A <-> A = B ) |
|
| 6 | 5 | orbi1i | |- ( ( B = A \/ A < B ) <-> ( A = B \/ A < B ) ) |
| 7 | orcom | |- ( ( A = B \/ A < B ) <-> ( A < B \/ A = B ) ) |
|
| 8 | 6 7 | bitri | |- ( ( B = A \/ A < B ) <-> ( A < B \/ A = B ) ) |
| 9 | 4 8 | bitr3di | |- ( ( A e. RR /\ B e. RR ) -> ( -. B < A <-> ( A < B \/ A = B ) ) ) |
| 10 | 1 9 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |