This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006) (Proof shortened by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efadd | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( A + B ) ) = ( ( exp ` A ) x. ( exp ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | eqid | |- ( n e. NN0 |-> ( ( B ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( B ^ n ) / ( ! ` n ) ) ) |
|
| 3 | eqid | |- ( n e. NN0 |-> ( ( ( A + B ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( A + B ) ^ n ) / ( ! ` n ) ) ) |
|
| 4 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 5 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 6 | 1 2 3 4 5 | efaddlem | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( A + B ) ) = ( ( exp ` A ) x. ( exp ` B ) ) ) |