This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulre | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( A e. RR <-> ( B x. A ) e. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rereb | |- ( A e. CC -> ( A e. RR <-> ( Re ` A ) = A ) ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( A e. RR <-> ( Re ` A ) = A ) ) |
| 3 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 4 | 3 | recnd | |- ( A e. CC -> ( Re ` A ) e. CC ) |
| 5 | 4 | 3ad2ant1 | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` A ) e. CC ) |
| 6 | simp1 | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> A e. CC ) |
|
| 7 | recn | |- ( B e. RR -> B e. CC ) |
|
| 8 | 7 | anim1i | |- ( ( B e. RR /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
| 9 | 8 | 3adant1 | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
| 10 | mulcan | |- ( ( ( Re ` A ) e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( Re ` A ) = A ) ) |
|
| 11 | 5 6 9 10 | syl3anc | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( Re ` A ) = A ) ) |
| 12 | 7 | adantr | |- ( ( B e. RR /\ A e. CC ) -> B e. CC ) |
| 13 | 4 | adantl | |- ( ( B e. RR /\ A e. CC ) -> ( Re ` A ) e. CC ) |
| 14 | ax-icn | |- _i e. CC |
|
| 15 | imcl | |- ( A e. CC -> ( Im ` A ) e. RR ) |
|
| 16 | 15 | recnd | |- ( A e. CC -> ( Im ` A ) e. CC ) |
| 17 | mulcl | |- ( ( _i e. CC /\ ( Im ` A ) e. CC ) -> ( _i x. ( Im ` A ) ) e. CC ) |
|
| 18 | 14 16 17 | sylancr | |- ( A e. CC -> ( _i x. ( Im ` A ) ) e. CC ) |
| 19 | 18 | adantl | |- ( ( B e. RR /\ A e. CC ) -> ( _i x. ( Im ` A ) ) e. CC ) |
| 20 | 12 13 19 | adddid | |- ( ( B e. RR /\ A e. CC ) -> ( B x. ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) = ( ( B x. ( Re ` A ) ) + ( B x. ( _i x. ( Im ` A ) ) ) ) ) |
| 21 | replim | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
|
| 22 | 21 | adantl | |- ( ( B e. RR /\ A e. CC ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 23 | 22 | oveq2d | |- ( ( B e. RR /\ A e. CC ) -> ( B x. A ) = ( B x. ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) ) |
| 24 | mul12 | |- ( ( _i e. CC /\ B e. CC /\ ( Im ` A ) e. CC ) -> ( _i x. ( B x. ( Im ` A ) ) ) = ( B x. ( _i x. ( Im ` A ) ) ) ) |
|
| 25 | 14 7 16 24 | mp3an3an | |- ( ( B e. RR /\ A e. CC ) -> ( _i x. ( B x. ( Im ` A ) ) ) = ( B x. ( _i x. ( Im ` A ) ) ) ) |
| 26 | 25 | oveq2d | |- ( ( B e. RR /\ A e. CC ) -> ( ( B x. ( Re ` A ) ) + ( _i x. ( B x. ( Im ` A ) ) ) ) = ( ( B x. ( Re ` A ) ) + ( B x. ( _i x. ( Im ` A ) ) ) ) ) |
| 27 | 20 23 26 | 3eqtr4d | |- ( ( B e. RR /\ A e. CC ) -> ( B x. A ) = ( ( B x. ( Re ` A ) ) + ( _i x. ( B x. ( Im ` A ) ) ) ) ) |
| 28 | 27 | fveq2d | |- ( ( B e. RR /\ A e. CC ) -> ( Re ` ( B x. A ) ) = ( Re ` ( ( B x. ( Re ` A ) ) + ( _i x. ( B x. ( Im ` A ) ) ) ) ) ) |
| 29 | remulcl | |- ( ( B e. RR /\ ( Re ` A ) e. RR ) -> ( B x. ( Re ` A ) ) e. RR ) |
|
| 30 | 3 29 | sylan2 | |- ( ( B e. RR /\ A e. CC ) -> ( B x. ( Re ` A ) ) e. RR ) |
| 31 | remulcl | |- ( ( B e. RR /\ ( Im ` A ) e. RR ) -> ( B x. ( Im ` A ) ) e. RR ) |
|
| 32 | 15 31 | sylan2 | |- ( ( B e. RR /\ A e. CC ) -> ( B x. ( Im ` A ) ) e. RR ) |
| 33 | crre | |- ( ( ( B x. ( Re ` A ) ) e. RR /\ ( B x. ( Im ` A ) ) e. RR ) -> ( Re ` ( ( B x. ( Re ` A ) ) + ( _i x. ( B x. ( Im ` A ) ) ) ) ) = ( B x. ( Re ` A ) ) ) |
|
| 34 | 30 32 33 | syl2anc | |- ( ( B e. RR /\ A e. CC ) -> ( Re ` ( ( B x. ( Re ` A ) ) + ( _i x. ( B x. ( Im ` A ) ) ) ) ) = ( B x. ( Re ` A ) ) ) |
| 35 | 28 34 | eqtr2d | |- ( ( B e. RR /\ A e. CC ) -> ( B x. ( Re ` A ) ) = ( Re ` ( B x. A ) ) ) |
| 36 | 35 | eqeq1d | |- ( ( B e. RR /\ A e. CC ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( Re ` ( B x. A ) ) = ( B x. A ) ) ) |
| 37 | mulcl | |- ( ( B e. CC /\ A e. CC ) -> ( B x. A ) e. CC ) |
|
| 38 | 7 37 | sylan | |- ( ( B e. RR /\ A e. CC ) -> ( B x. A ) e. CC ) |
| 39 | rereb | |- ( ( B x. A ) e. CC -> ( ( B x. A ) e. RR <-> ( Re ` ( B x. A ) ) = ( B x. A ) ) ) |
|
| 40 | 38 39 | syl | |- ( ( B e. RR /\ A e. CC ) -> ( ( B x. A ) e. RR <-> ( Re ` ( B x. A ) ) = ( B x. A ) ) ) |
| 41 | 36 40 | bitr4d | |- ( ( B e. RR /\ A e. CC ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( B x. A ) e. RR ) ) |
| 42 | 41 | ancoms | |- ( ( A e. CC /\ B e. RR ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( B x. A ) e. RR ) ) |
| 43 | 42 | 3adant3 | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( B x. A ) e. RR ) ) |
| 44 | 2 11 43 | 3bitr2d | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( A e. RR <-> ( B x. A ) e. RR ) ) |