This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product with negative is negative of product. Theorem I.12 of Apostol p. 18. (Contributed by NM, 14-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulneg1 | |- ( ( A e. CC /\ B e. CC ) -> ( -u A x. B ) = -u ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | subdir | |- ( ( 0 e. CC /\ A e. CC /\ B e. CC ) -> ( ( 0 - A ) x. B ) = ( ( 0 x. B ) - ( A x. B ) ) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( A e. CC /\ B e. CC ) -> ( ( 0 - A ) x. B ) = ( ( 0 x. B ) - ( A x. B ) ) ) |
| 4 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 5 | 4 | mul02d | |- ( ( A e. CC /\ B e. CC ) -> ( 0 x. B ) = 0 ) |
| 6 | 5 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( 0 x. B ) - ( A x. B ) ) = ( 0 - ( A x. B ) ) ) |
| 7 | 3 6 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( 0 - A ) x. B ) = ( 0 - ( A x. B ) ) ) |
| 8 | df-neg | |- -u A = ( 0 - A ) |
|
| 9 | 8 | oveq1i | |- ( -u A x. B ) = ( ( 0 - A ) x. B ) |
| 10 | df-neg | |- -u ( A x. B ) = ( 0 - ( A x. B ) ) |
|
| 11 | 7 9 10 | 3eqtr4g | |- ( ( A e. CC /\ B e. CC ) -> ( -u A x. B ) = -u ( A x. B ) ) |