This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adddir | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adddi | |- ( ( C e. CC /\ A e. CC /\ B e. CC ) -> ( C x. ( A + B ) ) = ( ( C x. A ) + ( C x. B ) ) ) |
|
| 2 | 1 | 3coml | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C x. ( A + B ) ) = ( ( C x. A ) + ( C x. B ) ) ) |
| 3 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 4 | mulcom | |- ( ( ( A + B ) e. CC /\ C e. CC ) -> ( ( A + B ) x. C ) = ( C x. ( A + B ) ) ) |
|
| 5 | 3 4 | stoic3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) x. C ) = ( C x. ( A + B ) ) ) |
| 6 | mulcom | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
|
| 7 | 6 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
| 8 | mulcom | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
|
| 9 | 8 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
| 10 | 7 9 | oveq12d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) + ( B x. C ) ) = ( ( C x. A ) + ( C x. B ) ) ) |
| 11 | 2 5 10 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) ) ) |