This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number is real iff the exponential of its product with _i has absolute value one. (Contributed by NM, 21-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absefib | |- ( A e. CC -> ( A e. RR <-> ( abs ` ( exp ` ( _i x. A ) ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 2 | 1 | eqeq2i | |- ( ( exp ` -u ( Im ` A ) ) = ( exp ` 0 ) <-> ( exp ` -u ( Im ` A ) ) = 1 ) |
| 3 | imcl | |- ( A e. CC -> ( Im ` A ) e. RR ) |
|
| 4 | 3 | renegcld | |- ( A e. CC -> -u ( Im ` A ) e. RR ) |
| 5 | 0re | |- 0 e. RR |
|
| 6 | reef11 | |- ( ( -u ( Im ` A ) e. RR /\ 0 e. RR ) -> ( ( exp ` -u ( Im ` A ) ) = ( exp ` 0 ) <-> -u ( Im ` A ) = 0 ) ) |
|
| 7 | 4 5 6 | sylancl | |- ( A e. CC -> ( ( exp ` -u ( Im ` A ) ) = ( exp ` 0 ) <-> -u ( Im ` A ) = 0 ) ) |
| 8 | 2 7 | bitr3id | |- ( A e. CC -> ( ( exp ` -u ( Im ` A ) ) = 1 <-> -u ( Im ` A ) = 0 ) ) |
| 9 | 3 | recnd | |- ( A e. CC -> ( Im ` A ) e. CC ) |
| 10 | 9 | negeq0d | |- ( A e. CC -> ( ( Im ` A ) = 0 <-> -u ( Im ` A ) = 0 ) ) |
| 11 | 8 10 | bitr4d | |- ( A e. CC -> ( ( exp ` -u ( Im ` A ) ) = 1 <-> ( Im ` A ) = 0 ) ) |
| 12 | ax-icn | |- _i e. CC |
|
| 13 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 14 | 12 13 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 15 | absef | |- ( ( _i x. A ) e. CC -> ( abs ` ( exp ` ( _i x. A ) ) ) = ( exp ` ( Re ` ( _i x. A ) ) ) ) |
|
| 16 | 14 15 | syl | |- ( A e. CC -> ( abs ` ( exp ` ( _i x. A ) ) ) = ( exp ` ( Re ` ( _i x. A ) ) ) ) |
| 17 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 18 | 17 | recnd | |- ( A e. CC -> ( Re ` A ) e. CC ) |
| 19 | mulcl | |- ( ( _i e. CC /\ ( Im ` A ) e. CC ) -> ( _i x. ( Im ` A ) ) e. CC ) |
|
| 20 | 12 9 19 | sylancr | |- ( A e. CC -> ( _i x. ( Im ` A ) ) e. CC ) |
| 21 | replim | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
|
| 22 | 18 20 21 | comraddd | |- ( A e. CC -> A = ( ( _i x. ( Im ` A ) ) + ( Re ` A ) ) ) |
| 23 | 22 | oveq2d | |- ( A e. CC -> ( _i x. A ) = ( _i x. ( ( _i x. ( Im ` A ) ) + ( Re ` A ) ) ) ) |
| 24 | adddi | |- ( ( _i e. CC /\ ( _i x. ( Im ` A ) ) e. CC /\ ( Re ` A ) e. CC ) -> ( _i x. ( ( _i x. ( Im ` A ) ) + ( Re ` A ) ) ) = ( ( _i x. ( _i x. ( Im ` A ) ) ) + ( _i x. ( Re ` A ) ) ) ) |
|
| 25 | 12 20 18 24 | mp3an2i | |- ( A e. CC -> ( _i x. ( ( _i x. ( Im ` A ) ) + ( Re ` A ) ) ) = ( ( _i x. ( _i x. ( Im ` A ) ) ) + ( _i x. ( Re ` A ) ) ) ) |
| 26 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 27 | 26 | oveq1i | |- ( ( _i x. _i ) x. ( Im ` A ) ) = ( -u 1 x. ( Im ` A ) ) |
| 28 | mulass | |- ( ( _i e. CC /\ _i e. CC /\ ( Im ` A ) e. CC ) -> ( ( _i x. _i ) x. ( Im ` A ) ) = ( _i x. ( _i x. ( Im ` A ) ) ) ) |
|
| 29 | 12 12 9 28 | mp3an12i | |- ( A e. CC -> ( ( _i x. _i ) x. ( Im ` A ) ) = ( _i x. ( _i x. ( Im ` A ) ) ) ) |
| 30 | 9 | mulm1d | |- ( A e. CC -> ( -u 1 x. ( Im ` A ) ) = -u ( Im ` A ) ) |
| 31 | 27 29 30 | 3eqtr3a | |- ( A e. CC -> ( _i x. ( _i x. ( Im ` A ) ) ) = -u ( Im ` A ) ) |
| 32 | 31 | oveq1d | |- ( A e. CC -> ( ( _i x. ( _i x. ( Im ` A ) ) ) + ( _i x. ( Re ` A ) ) ) = ( -u ( Im ` A ) + ( _i x. ( Re ` A ) ) ) ) |
| 33 | 25 32 | eqtrd | |- ( A e. CC -> ( _i x. ( ( _i x. ( Im ` A ) ) + ( Re ` A ) ) ) = ( -u ( Im ` A ) + ( _i x. ( Re ` A ) ) ) ) |
| 34 | 23 33 | eqtrd | |- ( A e. CC -> ( _i x. A ) = ( -u ( Im ` A ) + ( _i x. ( Re ` A ) ) ) ) |
| 35 | 34 | fveq2d | |- ( A e. CC -> ( Re ` ( _i x. A ) ) = ( Re ` ( -u ( Im ` A ) + ( _i x. ( Re ` A ) ) ) ) ) |
| 36 | 4 17 | crred | |- ( A e. CC -> ( Re ` ( -u ( Im ` A ) + ( _i x. ( Re ` A ) ) ) ) = -u ( Im ` A ) ) |
| 37 | 35 36 | eqtrd | |- ( A e. CC -> ( Re ` ( _i x. A ) ) = -u ( Im ` A ) ) |
| 38 | 37 | fveq2d | |- ( A e. CC -> ( exp ` ( Re ` ( _i x. A ) ) ) = ( exp ` -u ( Im ` A ) ) ) |
| 39 | 16 38 | eqtrd | |- ( A e. CC -> ( abs ` ( exp ` ( _i x. A ) ) ) = ( exp ` -u ( Im ` A ) ) ) |
| 40 | 39 | eqeq1d | |- ( A e. CC -> ( ( abs ` ( exp ` ( _i x. A ) ) ) = 1 <-> ( exp ` -u ( Im ` A ) ) = 1 ) ) |
| 41 | reim0b | |- ( A e. CC -> ( A e. RR <-> ( Im ` A ) = 0 ) ) |
|
| 42 | 11 40 41 | 3bitr4rd | |- ( A e. CC -> ( A e. RR <-> ( abs ` ( exp ` ( _i x. A ) ) ) = 1 ) ) |