This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modlt | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) < B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | rpcnne0 | |- ( B e. RR+ -> ( B e. CC /\ B =/= 0 ) ) |
|
| 3 | divcan2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A / B ) ) = A ) |
|
| 4 | 3 | 3expb | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( B x. ( A / B ) ) = A ) |
| 5 | 1 2 4 | syl2an | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( A / B ) ) = A ) |
| 6 | 5 | oveq1d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( B x. ( A / B ) ) - ( B x. ( |_ ` ( A / B ) ) ) ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 7 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 8 | 7 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
| 9 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 10 | 9 | recnd | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. CC ) |
| 11 | refldivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) |
|
| 12 | 11 | recnd | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 13 | 8 10 12 | subdid | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( ( A / B ) - ( |_ ` ( A / B ) ) ) ) = ( ( B x. ( A / B ) ) - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 14 | modval | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 15 | 6 13 14 | 3eqtr4rd | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( B x. ( ( A / B ) - ( |_ ` ( A / B ) ) ) ) ) |
| 16 | fraclt1 | |- ( ( A / B ) e. RR -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < 1 ) |
|
| 17 | 9 16 | syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < 1 ) |
| 18 | divid | |- ( ( B e. CC /\ B =/= 0 ) -> ( B / B ) = 1 ) |
|
| 19 | 2 18 | syl | |- ( B e. RR+ -> ( B / B ) = 1 ) |
| 20 | 19 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> ( B / B ) = 1 ) |
| 21 | 17 20 | breqtrrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < ( B / B ) ) |
| 22 | 9 11 | resubcld | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) e. RR ) |
| 23 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 24 | 23 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. RR ) |
| 25 | rpregt0 | |- ( B e. RR+ -> ( B e. RR /\ 0 < B ) ) |
|
| 26 | 25 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> ( B e. RR /\ 0 < B ) ) |
| 27 | ltmuldiv2 | |- ( ( ( ( A / B ) - ( |_ ` ( A / B ) ) ) e. RR /\ B e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( B x. ( ( A / B ) - ( |_ ` ( A / B ) ) ) ) < B <-> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < ( B / B ) ) ) |
|
| 28 | 22 24 26 27 | syl3anc | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( B x. ( ( A / B ) - ( |_ ` ( A / B ) ) ) ) < B <-> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < ( B / B ) ) ) |
| 29 | 21 28 | mpbird | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( ( A / B ) - ( |_ ` ( A / B ) ) ) ) < B ) |
| 30 | 15 29 | eqbrtrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) < B ) |