This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of an integer multiple of _pi is 0. (Contributed by NM, 11-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinkpi | |- ( K e. ZZ -> ( sin ` ( K x. _pi ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 2 | picn | |- _pi e. CC |
|
| 3 | mulcl | |- ( ( K e. CC /\ _pi e. CC ) -> ( K x. _pi ) e. CC ) |
|
| 4 | 1 2 3 | sylancl | |- ( K e. ZZ -> ( K x. _pi ) e. CC ) |
| 5 | 4 | addlidd | |- ( K e. ZZ -> ( 0 + ( K x. _pi ) ) = ( K x. _pi ) ) |
| 6 | 5 | fveq2d | |- ( K e. ZZ -> ( sin ` ( 0 + ( K x. _pi ) ) ) = ( sin ` ( K x. _pi ) ) ) |
| 7 | 0cn | |- 0 e. CC |
|
| 8 | addcl | |- ( ( 0 e. CC /\ ( K x. _pi ) e. CC ) -> ( 0 + ( K x. _pi ) ) e. CC ) |
|
| 9 | 7 4 8 | sylancr | |- ( K e. ZZ -> ( 0 + ( K x. _pi ) ) e. CC ) |
| 10 | 9 | sincld | |- ( K e. ZZ -> ( sin ` ( 0 + ( K x. _pi ) ) ) e. CC ) |
| 11 | abssinper | |- ( ( 0 e. CC /\ K e. ZZ ) -> ( abs ` ( sin ` ( 0 + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` 0 ) ) ) |
|
| 12 | 7 11 | mpan | |- ( K e. ZZ -> ( abs ` ( sin ` ( 0 + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` 0 ) ) ) |
| 13 | sin0 | |- ( sin ` 0 ) = 0 |
|
| 14 | 13 | fveq2i | |- ( abs ` ( sin ` 0 ) ) = ( abs ` 0 ) |
| 15 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 16 | 14 15 | eqtri | |- ( abs ` ( sin ` 0 ) ) = 0 |
| 17 | 12 16 | eqtrdi | |- ( K e. ZZ -> ( abs ` ( sin ` ( 0 + ( K x. _pi ) ) ) ) = 0 ) |
| 18 | 10 17 | abs00d | |- ( K e. ZZ -> ( sin ` ( 0 + ( K x. _pi ) ) ) = 0 ) |
| 19 | 6 18 | eqtr3d | |- ( K e. ZZ -> ( sin ` ( K x. _pi ) ) = 0 ) |