This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mod B is zero iff A is evenly divisible by B . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Fan Zheng, 7-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mod0 | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( A / B ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 2 | 1 | eqeq1d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) = 0 ) ) |
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | 3 | adantr | |- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
| 5 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 6 | 5 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. RR ) |
| 7 | refldivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) |
|
| 8 | 6 7 | remulcld | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. RR ) |
| 9 | 8 | recnd | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. CC ) |
| 10 | 4 9 | subeq0ad | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( B x. ( |_ ` ( A / B ) ) ) ) = 0 <-> A = ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 11 | 2 10 | bitrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> A = ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 12 | 7 | recnd | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 13 | rpcnne0 | |- ( B e. RR+ -> ( B e. CC /\ B =/= 0 ) ) |
|
| 14 | 13 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> ( B e. CC /\ B =/= 0 ) ) |
| 15 | divmul2 | |- ( ( A e. CC /\ ( |_ ` ( A / B ) ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = ( |_ ` ( A / B ) ) <-> A = ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 16 | 4 12 14 15 | syl3anc | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) = ( |_ ` ( A / B ) ) <-> A = ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 17 | eqcom | |- ( ( A / B ) = ( |_ ` ( A / B ) ) <-> ( |_ ` ( A / B ) ) = ( A / B ) ) |
|
| 18 | 16 17 | bitr3di | |- ( ( A e. RR /\ B e. RR+ ) -> ( A = ( B x. ( |_ ` ( A / B ) ) ) <-> ( |_ ` ( A / B ) ) = ( A / B ) ) ) |
| 19 | 11 18 | bitrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( |_ ` ( A / B ) ) = ( A / B ) ) ) |
| 20 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 21 | flidz | |- ( ( A / B ) e. RR -> ( ( |_ ` ( A / B ) ) = ( A / B ) <-> ( A / B ) e. ZZ ) ) |
|
| 22 | 20 21 | syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( |_ ` ( A / B ) ) = ( A / B ) <-> ( A / B ) e. ZZ ) ) |
| 23 | 19 22 | bitrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( A / B ) e. ZZ ) ) |