This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for the modulo operation. (Contributed by NM, 10-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 2 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 3 | 2 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. RR ) |
| 4 | refldivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) |
|
| 5 | 3 4 | remulcld | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. RR ) |
| 6 | resubcl | |- ( ( A e. RR /\ ( B x. ( |_ ` ( A / B ) ) ) e. RR ) -> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) e. RR ) |
|
| 7 | 5 6 | syldan | |- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) e. RR ) |
| 8 | 1 7 | eqeltrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. RR ) |