This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by 0 . Theorem I.6 of Apostol p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999) (Revised by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul02 | |- ( A e. CC -> ( 0 x. A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | |- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
|
| 2 | 0cn | |- 0 e. CC |
|
| 3 | recn | |- ( x e. RR -> x e. CC ) |
|
| 4 | ax-icn | |- _i e. CC |
|
| 5 | recn | |- ( y e. RR -> y e. CC ) |
|
| 6 | mulcl | |- ( ( _i e. CC /\ y e. CC ) -> ( _i x. y ) e. CC ) |
|
| 7 | 4 5 6 | sylancr | |- ( y e. RR -> ( _i x. y ) e. CC ) |
| 8 | adddi | |- ( ( 0 e. CC /\ x e. CC /\ ( _i x. y ) e. CC ) -> ( 0 x. ( x + ( _i x. y ) ) ) = ( ( 0 x. x ) + ( 0 x. ( _i x. y ) ) ) ) |
|
| 9 | 2 3 7 8 | mp3an3an | |- ( ( x e. RR /\ y e. RR ) -> ( 0 x. ( x + ( _i x. y ) ) ) = ( ( 0 x. x ) + ( 0 x. ( _i x. y ) ) ) ) |
| 10 | mul02lem2 | |- ( x e. RR -> ( 0 x. x ) = 0 ) |
|
| 11 | mul12 | |- ( ( 0 e. CC /\ _i e. CC /\ y e. CC ) -> ( 0 x. ( _i x. y ) ) = ( _i x. ( 0 x. y ) ) ) |
|
| 12 | 2 4 5 11 | mp3an12i | |- ( y e. RR -> ( 0 x. ( _i x. y ) ) = ( _i x. ( 0 x. y ) ) ) |
| 13 | mul02lem2 | |- ( y e. RR -> ( 0 x. y ) = 0 ) |
|
| 14 | 13 | oveq2d | |- ( y e. RR -> ( _i x. ( 0 x. y ) ) = ( _i x. 0 ) ) |
| 15 | 12 14 | eqtrd | |- ( y e. RR -> ( 0 x. ( _i x. y ) ) = ( _i x. 0 ) ) |
| 16 | 10 15 | oveqan12d | |- ( ( x e. RR /\ y e. RR ) -> ( ( 0 x. x ) + ( 0 x. ( _i x. y ) ) ) = ( 0 + ( _i x. 0 ) ) ) |
| 17 | 9 16 | eqtrd | |- ( ( x e. RR /\ y e. RR ) -> ( 0 x. ( x + ( _i x. y ) ) ) = ( 0 + ( _i x. 0 ) ) ) |
| 18 | cnre | |- ( 0 e. CC -> E. x e. RR E. y e. RR 0 = ( x + ( _i x. y ) ) ) |
|
| 19 | 2 18 | ax-mp | |- E. x e. RR E. y e. RR 0 = ( x + ( _i x. y ) ) |
| 20 | oveq2 | |- ( 0 = ( x + ( _i x. y ) ) -> ( 0 x. 0 ) = ( 0 x. ( x + ( _i x. y ) ) ) ) |
|
| 21 | 20 | eqeq1d | |- ( 0 = ( x + ( _i x. y ) ) -> ( ( 0 x. 0 ) = ( 0 + ( _i x. 0 ) ) <-> ( 0 x. ( x + ( _i x. y ) ) ) = ( 0 + ( _i x. 0 ) ) ) ) |
| 22 | 17 21 | syl5ibrcom | |- ( ( x e. RR /\ y e. RR ) -> ( 0 = ( x + ( _i x. y ) ) -> ( 0 x. 0 ) = ( 0 + ( _i x. 0 ) ) ) ) |
| 23 | 22 | rexlimivv | |- ( E. x e. RR E. y e. RR 0 = ( x + ( _i x. y ) ) -> ( 0 x. 0 ) = ( 0 + ( _i x. 0 ) ) ) |
| 24 | 19 23 | ax-mp | |- ( 0 x. 0 ) = ( 0 + ( _i x. 0 ) ) |
| 25 | 0re | |- 0 e. RR |
|
| 26 | mul02lem2 | |- ( 0 e. RR -> ( 0 x. 0 ) = 0 ) |
|
| 27 | 25 26 | ax-mp | |- ( 0 x. 0 ) = 0 |
| 28 | 24 27 | eqtr3i | |- ( 0 + ( _i x. 0 ) ) = 0 |
| 29 | 17 28 | eqtrdi | |- ( ( x e. RR /\ y e. RR ) -> ( 0 x. ( x + ( _i x. y ) ) ) = 0 ) |
| 30 | oveq2 | |- ( A = ( x + ( _i x. y ) ) -> ( 0 x. A ) = ( 0 x. ( x + ( _i x. y ) ) ) ) |
|
| 31 | 30 | eqeq1d | |- ( A = ( x + ( _i x. y ) ) -> ( ( 0 x. A ) = 0 <-> ( 0 x. ( x + ( _i x. y ) ) ) = 0 ) ) |
| 32 | 29 31 | syl5ibrcom | |- ( ( x e. RR /\ y e. RR ) -> ( A = ( x + ( _i x. y ) ) -> ( 0 x. A ) = 0 ) ) |
| 33 | 32 | rexlimivv | |- ( E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) -> ( 0 x. A ) = 0 ) |
| 34 | 1 33 | syl | |- ( A e. CC -> ( 0 x. A ) = 0 ) |