This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosplitsni | |- ( B e. ( ZZ>= ` A ) -> ( C e. ( A ..^ ( B + 1 ) ) <-> ( C e. ( A ..^ B ) \/ C = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzosplitsn | |- ( B e. ( ZZ>= ` A ) -> ( A ..^ ( B + 1 ) ) = ( ( A ..^ B ) u. { B } ) ) |
|
| 2 | 1 | eleq2d | |- ( B e. ( ZZ>= ` A ) -> ( C e. ( A ..^ ( B + 1 ) ) <-> C e. ( ( A ..^ B ) u. { B } ) ) ) |
| 3 | elun | |- ( C e. ( ( A ..^ B ) u. { B } ) <-> ( C e. ( A ..^ B ) \/ C e. { B } ) ) |
|
| 4 | elsn2g | |- ( B e. ( ZZ>= ` A ) -> ( C e. { B } <-> C = B ) ) |
|
| 5 | 4 | orbi2d | |- ( B e. ( ZZ>= ` A ) -> ( ( C e. ( A ..^ B ) \/ C e. { B } ) <-> ( C e. ( A ..^ B ) \/ C = B ) ) ) |
| 6 | 3 5 | bitrid | |- ( B e. ( ZZ>= ` A ) -> ( C e. ( ( A ..^ B ) u. { B } ) <-> ( C e. ( A ..^ B ) \/ C = B ) ) ) |
| 7 | 2 6 | bitrd | |- ( B e. ( ZZ>= ` A ) -> ( C e. ( A ..^ ( B + 1 ) ) <-> ( C e. ( A ..^ B ) \/ C = B ) ) ) |