This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnuni.g | |- G = ( SymGrp ` D ) |
|
| psgnuni.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnuni.d | |- ( ph -> D e. V ) |
||
| psgnuni.w | |- ( ph -> W e. Word T ) |
||
| psgnuni.x | |- ( ph -> X e. Word T ) |
||
| psgnuni.e | |- ( ph -> ( G gsum W ) = ( G gsum X ) ) |
||
| Assertion | psgnuni | |- ( ph -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnuni.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnuni.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnuni.d | |- ( ph -> D e. V ) |
|
| 4 | psgnuni.w | |- ( ph -> W e. Word T ) |
|
| 5 | psgnuni.x | |- ( ph -> X e. Word T ) |
|
| 6 | psgnuni.e | |- ( ph -> ( G gsum W ) = ( G gsum X ) ) |
|
| 7 | lencl | |- ( W e. Word T -> ( # ` W ) e. NN0 ) |
|
| 8 | 4 7 | syl | |- ( ph -> ( # ` W ) e. NN0 ) |
| 9 | 8 | nn0zd | |- ( ph -> ( # ` W ) e. ZZ ) |
| 10 | m1expcl | |- ( ( # ` W ) e. ZZ -> ( -u 1 ^ ( # ` W ) ) e. ZZ ) |
|
| 11 | 9 10 | syl | |- ( ph -> ( -u 1 ^ ( # ` W ) ) e. ZZ ) |
| 12 | 11 | zcnd | |- ( ph -> ( -u 1 ^ ( # ` W ) ) e. CC ) |
| 13 | lencl | |- ( X e. Word T -> ( # ` X ) e. NN0 ) |
|
| 14 | 5 13 | syl | |- ( ph -> ( # ` X ) e. NN0 ) |
| 15 | 14 | nn0zd | |- ( ph -> ( # ` X ) e. ZZ ) |
| 16 | m1expcl | |- ( ( # ` X ) e. ZZ -> ( -u 1 ^ ( # ` X ) ) e. ZZ ) |
|
| 17 | 15 16 | syl | |- ( ph -> ( -u 1 ^ ( # ` X ) ) e. ZZ ) |
| 18 | 17 | zcnd | |- ( ph -> ( -u 1 ^ ( # ` X ) ) e. CC ) |
| 19 | neg1cn | |- -u 1 e. CC |
|
| 20 | neg1ne0 | |- -u 1 =/= 0 |
|
| 21 | expne0i | |- ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ ( # ` X ) e. ZZ ) -> ( -u 1 ^ ( # ` X ) ) =/= 0 ) |
|
| 22 | 19 20 15 21 | mp3an12i | |- ( ph -> ( -u 1 ^ ( # ` X ) ) =/= 0 ) |
| 23 | m1expaddsub | |- ( ( ( # ` W ) e. ZZ /\ ( # ` X ) e. ZZ ) -> ( -u 1 ^ ( ( # ` W ) - ( # ` X ) ) ) = ( -u 1 ^ ( ( # ` W ) + ( # ` X ) ) ) ) |
|
| 24 | 9 15 23 | syl2anc | |- ( ph -> ( -u 1 ^ ( ( # ` W ) - ( # ` X ) ) ) = ( -u 1 ^ ( ( # ` W ) + ( # ` X ) ) ) ) |
| 25 | expsub | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( ( # ` W ) e. ZZ /\ ( # ` X ) e. ZZ ) ) -> ( -u 1 ^ ( ( # ` W ) - ( # ` X ) ) ) = ( ( -u 1 ^ ( # ` W ) ) / ( -u 1 ^ ( # ` X ) ) ) ) |
|
| 26 | 19 20 25 | mpanl12 | |- ( ( ( # ` W ) e. ZZ /\ ( # ` X ) e. ZZ ) -> ( -u 1 ^ ( ( # ` W ) - ( # ` X ) ) ) = ( ( -u 1 ^ ( # ` W ) ) / ( -u 1 ^ ( # ` X ) ) ) ) |
| 27 | 9 15 26 | syl2anc | |- ( ph -> ( -u 1 ^ ( ( # ` W ) - ( # ` X ) ) ) = ( ( -u 1 ^ ( # ` W ) ) / ( -u 1 ^ ( # ` X ) ) ) ) |
| 28 | revcl | |- ( X e. Word T -> ( reverse ` X ) e. Word T ) |
|
| 29 | 5 28 | syl | |- ( ph -> ( reverse ` X ) e. Word T ) |
| 30 | ccatlen | |- ( ( W e. Word T /\ ( reverse ` X ) e. Word T ) -> ( # ` ( W ++ ( reverse ` X ) ) ) = ( ( # ` W ) + ( # ` ( reverse ` X ) ) ) ) |
|
| 31 | 4 29 30 | syl2anc | |- ( ph -> ( # ` ( W ++ ( reverse ` X ) ) ) = ( ( # ` W ) + ( # ` ( reverse ` X ) ) ) ) |
| 32 | revlen | |- ( X e. Word T -> ( # ` ( reverse ` X ) ) = ( # ` X ) ) |
|
| 33 | 5 32 | syl | |- ( ph -> ( # ` ( reverse ` X ) ) = ( # ` X ) ) |
| 34 | 33 | oveq2d | |- ( ph -> ( ( # ` W ) + ( # ` ( reverse ` X ) ) ) = ( ( # ` W ) + ( # ` X ) ) ) |
| 35 | 31 34 | eqtr2d | |- ( ph -> ( ( # ` W ) + ( # ` X ) ) = ( # ` ( W ++ ( reverse ` X ) ) ) ) |
| 36 | 35 | oveq2d | |- ( ph -> ( -u 1 ^ ( ( # ` W ) + ( # ` X ) ) ) = ( -u 1 ^ ( # ` ( W ++ ( reverse ` X ) ) ) ) ) |
| 37 | ccatcl | |- ( ( W e. Word T /\ ( reverse ` X ) e. Word T ) -> ( W ++ ( reverse ` X ) ) e. Word T ) |
|
| 38 | 4 29 37 | syl2anc | |- ( ph -> ( W ++ ( reverse ` X ) ) e. Word T ) |
| 39 | 6 | fveq2d | |- ( ph -> ( ( invg ` G ) ` ( G gsum W ) ) = ( ( invg ` G ) ` ( G gsum X ) ) ) |
| 40 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 41 | 2 1 40 | symgtrinv | |- ( ( D e. V /\ X e. Word T ) -> ( ( invg ` G ) ` ( G gsum X ) ) = ( G gsum ( reverse ` X ) ) ) |
| 42 | 3 5 41 | syl2anc | |- ( ph -> ( ( invg ` G ) ` ( G gsum X ) ) = ( G gsum ( reverse ` X ) ) ) |
| 43 | 39 42 | eqtr2d | |- ( ph -> ( G gsum ( reverse ` X ) ) = ( ( invg ` G ) ` ( G gsum W ) ) ) |
| 44 | 43 | oveq2d | |- ( ph -> ( ( G gsum W ) ( +g ` G ) ( G gsum ( reverse ` X ) ) ) = ( ( G gsum W ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum W ) ) ) ) |
| 45 | 1 | symggrp | |- ( D e. V -> G e. Grp ) |
| 46 | 3 45 | syl | |- ( ph -> G e. Grp ) |
| 47 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 48 | 3 45 47 | 3syl | |- ( ph -> G e. Mnd ) |
| 49 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 50 | 2 1 49 | symgtrf | |- T C_ ( Base ` G ) |
| 51 | sswrd | |- ( T C_ ( Base ` G ) -> Word T C_ Word ( Base ` G ) ) |
|
| 52 | 50 51 | ax-mp | |- Word T C_ Word ( Base ` G ) |
| 53 | 52 4 | sselid | |- ( ph -> W e. Word ( Base ` G ) ) |
| 54 | 49 | gsumwcl | |- ( ( G e. Mnd /\ W e. Word ( Base ` G ) ) -> ( G gsum W ) e. ( Base ` G ) ) |
| 55 | 48 53 54 | syl2anc | |- ( ph -> ( G gsum W ) e. ( Base ` G ) ) |
| 56 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 57 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 58 | 49 56 57 40 | grprinv | |- ( ( G e. Grp /\ ( G gsum W ) e. ( Base ` G ) ) -> ( ( G gsum W ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum W ) ) ) = ( 0g ` G ) ) |
| 59 | 46 55 58 | syl2anc | |- ( ph -> ( ( G gsum W ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum W ) ) ) = ( 0g ` G ) ) |
| 60 | 44 59 | eqtrd | |- ( ph -> ( ( G gsum W ) ( +g ` G ) ( G gsum ( reverse ` X ) ) ) = ( 0g ` G ) ) |
| 61 | 52 29 | sselid | |- ( ph -> ( reverse ` X ) e. Word ( Base ` G ) ) |
| 62 | 49 56 | gsumccat | |- ( ( G e. Mnd /\ W e. Word ( Base ` G ) /\ ( reverse ` X ) e. Word ( Base ` G ) ) -> ( G gsum ( W ++ ( reverse ` X ) ) ) = ( ( G gsum W ) ( +g ` G ) ( G gsum ( reverse ` X ) ) ) ) |
| 63 | 48 53 61 62 | syl3anc | |- ( ph -> ( G gsum ( W ++ ( reverse ` X ) ) ) = ( ( G gsum W ) ( +g ` G ) ( G gsum ( reverse ` X ) ) ) ) |
| 64 | 1 | symgid | |- ( D e. V -> ( _I |` D ) = ( 0g ` G ) ) |
| 65 | 3 64 | syl | |- ( ph -> ( _I |` D ) = ( 0g ` G ) ) |
| 66 | 60 63 65 | 3eqtr4d | |- ( ph -> ( G gsum ( W ++ ( reverse ` X ) ) ) = ( _I |` D ) ) |
| 67 | 1 2 3 38 66 | psgnunilem4 | |- ( ph -> ( -u 1 ^ ( # ` ( W ++ ( reverse ` X ) ) ) ) = 1 ) |
| 68 | 36 67 | eqtrd | |- ( ph -> ( -u 1 ^ ( ( # ` W ) + ( # ` X ) ) ) = 1 ) |
| 69 | 24 27 68 | 3eqtr3d | |- ( ph -> ( ( -u 1 ^ ( # ` W ) ) / ( -u 1 ^ ( # ` X ) ) ) = 1 ) |
| 70 | 12 18 22 69 | diveq1d | |- ( ph -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` X ) ) ) |