This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symbols to the left of a splice are unaffected. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spllen.s | |- ( ph -> S e. Word A ) |
|
| spllen.f | |- ( ph -> F e. ( 0 ... T ) ) |
||
| spllen.t | |- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
||
| spllen.r | |- ( ph -> R e. Word A ) |
||
| splfv1.x | |- ( ph -> X e. ( 0 ..^ F ) ) |
||
| Assertion | splfv1 | |- ( ph -> ( ( S splice <. F , T , R >. ) ` X ) = ( S ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spllen.s | |- ( ph -> S e. Word A ) |
|
| 2 | spllen.f | |- ( ph -> F e. ( 0 ... T ) ) |
|
| 3 | spllen.t | |- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
|
| 4 | spllen.r | |- ( ph -> R e. Word A ) |
|
| 5 | splfv1.x | |- ( ph -> X e. ( 0 ..^ F ) ) |
|
| 6 | splval | |- ( ( S e. Word A /\ ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) /\ R e. Word A ) ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
|
| 7 | 1 2 3 4 6 | syl13anc | |- ( ph -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| 8 | 7 | fveq1d | |- ( ph -> ( ( S splice <. F , T , R >. ) ` X ) = ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` X ) ) |
| 9 | pfxcl | |- ( S e. Word A -> ( S prefix F ) e. Word A ) |
|
| 10 | 1 9 | syl | |- ( ph -> ( S prefix F ) e. Word A ) |
| 11 | ccatcl | |- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( ( S prefix F ) ++ R ) e. Word A ) |
|
| 12 | 10 4 11 | syl2anc | |- ( ph -> ( ( S prefix F ) ++ R ) e. Word A ) |
| 13 | swrdcl | |- ( S e. Word A -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
|
| 14 | 1 13 | syl | |- ( ph -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
| 15 | 2 | elfzelzd | |- ( ph -> F e. ZZ ) |
| 16 | 15 | uzidd | |- ( ph -> F e. ( ZZ>= ` F ) ) |
| 17 | lencl | |- ( R e. Word A -> ( # ` R ) e. NN0 ) |
|
| 18 | 4 17 | syl | |- ( ph -> ( # ` R ) e. NN0 ) |
| 19 | uzaddcl | |- ( ( F e. ( ZZ>= ` F ) /\ ( # ` R ) e. NN0 ) -> ( F + ( # ` R ) ) e. ( ZZ>= ` F ) ) |
|
| 20 | 16 18 19 | syl2anc | |- ( ph -> ( F + ( # ` R ) ) e. ( ZZ>= ` F ) ) |
| 21 | fzoss2 | |- ( ( F + ( # ` R ) ) e. ( ZZ>= ` F ) -> ( 0 ..^ F ) C_ ( 0 ..^ ( F + ( # ` R ) ) ) ) |
|
| 22 | 20 21 | syl | |- ( ph -> ( 0 ..^ F ) C_ ( 0 ..^ ( F + ( # ` R ) ) ) ) |
| 23 | 22 5 | sseldd | |- ( ph -> X e. ( 0 ..^ ( F + ( # ` R ) ) ) ) |
| 24 | ccatlen | |- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
|
| 25 | 10 4 24 | syl2anc | |- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
| 26 | fzass4 | |- ( ( F e. ( 0 ... ( # ` S ) ) /\ T e. ( F ... ( # ` S ) ) ) <-> ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) ) ) |
|
| 27 | 26 | biimpri | |- ( ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) ) -> ( F e. ( 0 ... ( # ` S ) ) /\ T e. ( F ... ( # ` S ) ) ) ) |
| 28 | 27 | simpld | |- ( ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) ) -> F e. ( 0 ... ( # ` S ) ) ) |
| 29 | 2 3 28 | syl2anc | |- ( ph -> F e. ( 0 ... ( # ` S ) ) ) |
| 30 | pfxlen | |- ( ( S e. Word A /\ F e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix F ) ) = F ) |
|
| 31 | 1 29 30 | syl2anc | |- ( ph -> ( # ` ( S prefix F ) ) = F ) |
| 32 | 31 | oveq1d | |- ( ph -> ( ( # ` ( S prefix F ) ) + ( # ` R ) ) = ( F + ( # ` R ) ) ) |
| 33 | 25 32 | eqtrd | |- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( F + ( # ` R ) ) ) |
| 34 | 33 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) = ( 0 ..^ ( F + ( # ` R ) ) ) ) |
| 35 | 23 34 | eleqtrrd | |- ( ph -> X e. ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) |
| 36 | ccatval1 | |- ( ( ( ( S prefix F ) ++ R ) e. Word A /\ ( S substr <. T , ( # ` S ) >. ) e. Word A /\ X e. ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) -> ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` X ) = ( ( ( S prefix F ) ++ R ) ` X ) ) |
|
| 37 | 12 14 35 36 | syl3anc | |- ( ph -> ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` X ) = ( ( ( S prefix F ) ++ R ) ` X ) ) |
| 38 | 31 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` ( S prefix F ) ) ) = ( 0 ..^ F ) ) |
| 39 | 5 38 | eleqtrrd | |- ( ph -> X e. ( 0 ..^ ( # ` ( S prefix F ) ) ) ) |
| 40 | ccatval1 | |- ( ( ( S prefix F ) e. Word A /\ R e. Word A /\ X e. ( 0 ..^ ( # ` ( S prefix F ) ) ) ) -> ( ( ( S prefix F ) ++ R ) ` X ) = ( ( S prefix F ) ` X ) ) |
|
| 41 | 10 4 39 40 | syl3anc | |- ( ph -> ( ( ( S prefix F ) ++ R ) ` X ) = ( ( S prefix F ) ` X ) ) |
| 42 | pfxfv | |- ( ( S e. Word A /\ F e. ( 0 ... ( # ` S ) ) /\ X e. ( 0 ..^ F ) ) -> ( ( S prefix F ) ` X ) = ( S ` X ) ) |
|
| 43 | 1 29 5 42 | syl3anc | |- ( ph -> ( ( S prefix F ) ` X ) = ( S ` X ) ) |
| 44 | 41 43 | eqtrd | |- ( ph -> ( ( ( S prefix F ) ++ R ) ` X ) = ( S ` X ) ) |
| 45 | 8 37 44 | 3eqtrd | |- ( ph -> ( ( S splice <. F , T , R >. ) ` X ) = ( S ` X ) ) |