This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symbols within the replacement region of a splice, expressed using the coordinates of the replacement region. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spllen.s | |- ( ph -> S e. Word A ) |
|
| spllen.f | |- ( ph -> F e. ( 0 ... T ) ) |
||
| spllen.t | |- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
||
| spllen.r | |- ( ph -> R e. Word A ) |
||
| splfv2a.x | |- ( ph -> X e. ( 0 ..^ ( # ` R ) ) ) |
||
| Assertion | splfv2a | |- ( ph -> ( ( S splice <. F , T , R >. ) ` ( F + X ) ) = ( R ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spllen.s | |- ( ph -> S e. Word A ) |
|
| 2 | spllen.f | |- ( ph -> F e. ( 0 ... T ) ) |
|
| 3 | spllen.t | |- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
|
| 4 | spllen.r | |- ( ph -> R e. Word A ) |
|
| 5 | splfv2a.x | |- ( ph -> X e. ( 0 ..^ ( # ` R ) ) ) |
|
| 6 | splval | |- ( ( S e. Word A /\ ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) /\ R e. Word A ) ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
|
| 7 | 1 2 3 4 6 | syl13anc | |- ( ph -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| 8 | elfznn0 | |- ( F e. ( 0 ... T ) -> F e. NN0 ) |
|
| 9 | 2 8 | syl | |- ( ph -> F e. NN0 ) |
| 10 | 9 | nn0cnd | |- ( ph -> F e. CC ) |
| 11 | elfzonn0 | |- ( X e. ( 0 ..^ ( # ` R ) ) -> X e. NN0 ) |
|
| 12 | 5 11 | syl | |- ( ph -> X e. NN0 ) |
| 13 | 12 | nn0cnd | |- ( ph -> X e. CC ) |
| 14 | 10 13 | addcomd | |- ( ph -> ( F + X ) = ( X + F ) ) |
| 15 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 16 | 9 15 | eleqtrdi | |- ( ph -> F e. ( ZZ>= ` 0 ) ) |
| 17 | elfzuz3 | |- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ( ZZ>= ` T ) ) |
|
| 18 | 3 17 | syl | |- ( ph -> ( # ` S ) e. ( ZZ>= ` T ) ) |
| 19 | elfzuz3 | |- ( F e. ( 0 ... T ) -> T e. ( ZZ>= ` F ) ) |
|
| 20 | 2 19 | syl | |- ( ph -> T e. ( ZZ>= ` F ) ) |
| 21 | uztrn | |- ( ( ( # ` S ) e. ( ZZ>= ` T ) /\ T e. ( ZZ>= ` F ) ) -> ( # ` S ) e. ( ZZ>= ` F ) ) |
|
| 22 | 18 20 21 | syl2anc | |- ( ph -> ( # ` S ) e. ( ZZ>= ` F ) ) |
| 23 | elfzuzb | |- ( F e. ( 0 ... ( # ` S ) ) <-> ( F e. ( ZZ>= ` 0 ) /\ ( # ` S ) e. ( ZZ>= ` F ) ) ) |
|
| 24 | 16 22 23 | sylanbrc | |- ( ph -> F e. ( 0 ... ( # ` S ) ) ) |
| 25 | pfxlen | |- ( ( S e. Word A /\ F e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix F ) ) = F ) |
|
| 26 | 1 24 25 | syl2anc | |- ( ph -> ( # ` ( S prefix F ) ) = F ) |
| 27 | 26 | oveq2d | |- ( ph -> ( X + ( # ` ( S prefix F ) ) ) = ( X + F ) ) |
| 28 | 14 27 | eqtr4d | |- ( ph -> ( F + X ) = ( X + ( # ` ( S prefix F ) ) ) ) |
| 29 | 7 28 | fveq12d | |- ( ph -> ( ( S splice <. F , T , R >. ) ` ( F + X ) ) = ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` ( X + ( # ` ( S prefix F ) ) ) ) ) |
| 30 | pfxcl | |- ( S e. Word A -> ( S prefix F ) e. Word A ) |
|
| 31 | 1 30 | syl | |- ( ph -> ( S prefix F ) e. Word A ) |
| 32 | ccatcl | |- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( ( S prefix F ) ++ R ) e. Word A ) |
|
| 33 | 31 4 32 | syl2anc | |- ( ph -> ( ( S prefix F ) ++ R ) e. Word A ) |
| 34 | swrdcl | |- ( S e. Word A -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
|
| 35 | 1 34 | syl | |- ( ph -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
| 36 | 0nn0 | |- 0 e. NN0 |
|
| 37 | nn0addcl | |- ( ( 0 e. NN0 /\ F e. NN0 ) -> ( 0 + F ) e. NN0 ) |
|
| 38 | 36 9 37 | sylancr | |- ( ph -> ( 0 + F ) e. NN0 ) |
| 39 | fzoss1 | |- ( ( 0 + F ) e. ( ZZ>= ` 0 ) -> ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) C_ ( 0 ..^ ( ( # ` R ) + F ) ) ) |
|
| 40 | 39 15 | eleq2s | |- ( ( 0 + F ) e. NN0 -> ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) C_ ( 0 ..^ ( ( # ` R ) + F ) ) ) |
| 41 | 38 40 | syl | |- ( ph -> ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) C_ ( 0 ..^ ( ( # ` R ) + F ) ) ) |
| 42 | ccatlen | |- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
|
| 43 | 31 4 42 | syl2anc | |- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
| 44 | 26 | oveq1d | |- ( ph -> ( ( # ` ( S prefix F ) ) + ( # ` R ) ) = ( F + ( # ` R ) ) ) |
| 45 | lencl | |- ( R e. Word A -> ( # ` R ) e. NN0 ) |
|
| 46 | 4 45 | syl | |- ( ph -> ( # ` R ) e. NN0 ) |
| 47 | 46 | nn0cnd | |- ( ph -> ( # ` R ) e. CC ) |
| 48 | 10 47 | addcomd | |- ( ph -> ( F + ( # ` R ) ) = ( ( # ` R ) + F ) ) |
| 49 | 43 44 48 | 3eqtrd | |- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` R ) + F ) ) |
| 50 | 49 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) = ( 0 ..^ ( ( # ` R ) + F ) ) ) |
| 51 | 41 50 | sseqtrrd | |- ( ph -> ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) C_ ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) |
| 52 | 9 | nn0zd | |- ( ph -> F e. ZZ ) |
| 53 | fzoaddel | |- ( ( X e. ( 0 ..^ ( # ` R ) ) /\ F e. ZZ ) -> ( X + F ) e. ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) ) |
|
| 54 | 5 52 53 | syl2anc | |- ( ph -> ( X + F ) e. ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) ) |
| 55 | 51 54 | sseldd | |- ( ph -> ( X + F ) e. ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) |
| 56 | 27 55 | eqeltrd | |- ( ph -> ( X + ( # ` ( S prefix F ) ) ) e. ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) |
| 57 | ccatval1 | |- ( ( ( ( S prefix F ) ++ R ) e. Word A /\ ( S substr <. T , ( # ` S ) >. ) e. Word A /\ ( X + ( # ` ( S prefix F ) ) ) e. ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) -> ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` ( X + ( # ` ( S prefix F ) ) ) ) = ( ( ( S prefix F ) ++ R ) ` ( X + ( # ` ( S prefix F ) ) ) ) ) |
|
| 58 | 33 35 56 57 | syl3anc | |- ( ph -> ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` ( X + ( # ` ( S prefix F ) ) ) ) = ( ( ( S prefix F ) ++ R ) ` ( X + ( # ` ( S prefix F ) ) ) ) ) |
| 59 | ccatval3 | |- ( ( ( S prefix F ) e. Word A /\ R e. Word A /\ X e. ( 0 ..^ ( # ` R ) ) ) -> ( ( ( S prefix F ) ++ R ) ` ( X + ( # ` ( S prefix F ) ) ) ) = ( R ` X ) ) |
|
| 60 | 31 4 5 59 | syl3anc | |- ( ph -> ( ( ( S prefix F ) ++ R ) ` ( X + ( # ` ( S prefix F ) ) ) ) = ( R ` X ) ) |
| 61 | 29 58 60 | 3eqtrd | |- ( ph -> ( ( S splice <. F , T , R >. ) ` ( F + X ) ) = ( R ` X ) ) |