This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumspl.b | |- B = ( Base ` M ) |
|
| gsumspl.m | |- ( ph -> M e. Mnd ) |
||
| gsumspl.s | |- ( ph -> S e. Word B ) |
||
| gsumspl.f | |- ( ph -> F e. ( 0 ... T ) ) |
||
| gsumspl.t | |- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
||
| gsumspl.x | |- ( ph -> X e. Word B ) |
||
| gsumspl.y | |- ( ph -> Y e. Word B ) |
||
| gsumspl.eq | |- ( ph -> ( M gsum X ) = ( M gsum Y ) ) |
||
| Assertion | gsumspl | |- ( ph -> ( M gsum ( S splice <. F , T , X >. ) ) = ( M gsum ( S splice <. F , T , Y >. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumspl.b | |- B = ( Base ` M ) |
|
| 2 | gsumspl.m | |- ( ph -> M e. Mnd ) |
|
| 3 | gsumspl.s | |- ( ph -> S e. Word B ) |
|
| 4 | gsumspl.f | |- ( ph -> F e. ( 0 ... T ) ) |
|
| 5 | gsumspl.t | |- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
|
| 6 | gsumspl.x | |- ( ph -> X e. Word B ) |
|
| 7 | gsumspl.y | |- ( ph -> Y e. Word B ) |
|
| 8 | gsumspl.eq | |- ( ph -> ( M gsum X ) = ( M gsum Y ) ) |
|
| 9 | 8 | oveq2d | |- ( ph -> ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum X ) ) = ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum Y ) ) ) |
| 10 | 9 | oveq1d | |- ( ph -> ( ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum X ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum Y ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 11 | splval | |- ( ( S e. Word B /\ ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) /\ X e. Word B ) ) -> ( S splice <. F , T , X >. ) = ( ( ( S prefix F ) ++ X ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
|
| 12 | 3 4 5 6 11 | syl13anc | |- ( ph -> ( S splice <. F , T , X >. ) = ( ( ( S prefix F ) ++ X ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| 13 | 12 | oveq2d | |- ( ph -> ( M gsum ( S splice <. F , T , X >. ) ) = ( M gsum ( ( ( S prefix F ) ++ X ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 14 | pfxcl | |- ( S e. Word B -> ( S prefix F ) e. Word B ) |
|
| 15 | 3 14 | syl | |- ( ph -> ( S prefix F ) e. Word B ) |
| 16 | ccatcl | |- ( ( ( S prefix F ) e. Word B /\ X e. Word B ) -> ( ( S prefix F ) ++ X ) e. Word B ) |
|
| 17 | 15 6 16 | syl2anc | |- ( ph -> ( ( S prefix F ) ++ X ) e. Word B ) |
| 18 | swrdcl | |- ( S e. Word B -> ( S substr <. T , ( # ` S ) >. ) e. Word B ) |
|
| 19 | 3 18 | syl | |- ( ph -> ( S substr <. T , ( # ` S ) >. ) e. Word B ) |
| 20 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 21 | 1 20 | gsumccat | |- ( ( M e. Mnd /\ ( ( S prefix F ) ++ X ) e. Word B /\ ( S substr <. T , ( # ` S ) >. ) e. Word B ) -> ( M gsum ( ( ( S prefix F ) ++ X ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( M gsum ( ( S prefix F ) ++ X ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 22 | 2 17 19 21 | syl3anc | |- ( ph -> ( M gsum ( ( ( S prefix F ) ++ X ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( M gsum ( ( S prefix F ) ++ X ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 23 | 1 20 | gsumccat | |- ( ( M e. Mnd /\ ( S prefix F ) e. Word B /\ X e. Word B ) -> ( M gsum ( ( S prefix F ) ++ X ) ) = ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum X ) ) ) |
| 24 | 2 15 6 23 | syl3anc | |- ( ph -> ( M gsum ( ( S prefix F ) ++ X ) ) = ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum X ) ) ) |
| 25 | 24 | oveq1d | |- ( ph -> ( ( M gsum ( ( S prefix F ) ++ X ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum X ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 26 | 13 22 25 | 3eqtrd | |- ( ph -> ( M gsum ( S splice <. F , T , X >. ) ) = ( ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum X ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 27 | splval | |- ( ( S e. Word B /\ ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) /\ Y e. Word B ) ) -> ( S splice <. F , T , Y >. ) = ( ( ( S prefix F ) ++ Y ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
|
| 28 | 3 4 5 7 27 | syl13anc | |- ( ph -> ( S splice <. F , T , Y >. ) = ( ( ( S prefix F ) ++ Y ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| 29 | 28 | oveq2d | |- ( ph -> ( M gsum ( S splice <. F , T , Y >. ) ) = ( M gsum ( ( ( S prefix F ) ++ Y ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 30 | ccatcl | |- ( ( ( S prefix F ) e. Word B /\ Y e. Word B ) -> ( ( S prefix F ) ++ Y ) e. Word B ) |
|
| 31 | 15 7 30 | syl2anc | |- ( ph -> ( ( S prefix F ) ++ Y ) e. Word B ) |
| 32 | 1 20 | gsumccat | |- ( ( M e. Mnd /\ ( ( S prefix F ) ++ Y ) e. Word B /\ ( S substr <. T , ( # ` S ) >. ) e. Word B ) -> ( M gsum ( ( ( S prefix F ) ++ Y ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( M gsum ( ( S prefix F ) ++ Y ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 33 | 2 31 19 32 | syl3anc | |- ( ph -> ( M gsum ( ( ( S prefix F ) ++ Y ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( M gsum ( ( S prefix F ) ++ Y ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 34 | 1 20 | gsumccat | |- ( ( M e. Mnd /\ ( S prefix F ) e. Word B /\ Y e. Word B ) -> ( M gsum ( ( S prefix F ) ++ Y ) ) = ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum Y ) ) ) |
| 35 | 2 15 7 34 | syl3anc | |- ( ph -> ( M gsum ( ( S prefix F ) ++ Y ) ) = ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum Y ) ) ) |
| 36 | 35 | oveq1d | |- ( ph -> ( ( M gsum ( ( S prefix F ) ++ Y ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum Y ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 37 | 29 33 36 | 3eqtrd | |- ( ph -> ( M gsum ( S splice <. F , T , Y >. ) ) = ( ( ( M gsum ( S prefix F ) ) ( +g ` M ) ( M gsum Y ) ) ( +g ` M ) ( M gsum ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 38 | 10 26 37 | 3eqtr4d | |- ( ph -> ( M gsum ( S splice <. F , T , X >. ) ) = ( M gsum ( S splice <. F , T , Y >. ) ) ) |