This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spllen.s | |- ( ph -> S e. Word A ) |
|
| spllen.f | |- ( ph -> F e. ( 0 ... T ) ) |
||
| spllen.t | |- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
||
| spllen.r | |- ( ph -> R e. Word A ) |
||
| Assertion | spllen | |- ( ph -> ( # ` ( S splice <. F , T , R >. ) ) = ( ( # ` S ) + ( ( # ` R ) - ( T - F ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spllen.s | |- ( ph -> S e. Word A ) |
|
| 2 | spllen.f | |- ( ph -> F e. ( 0 ... T ) ) |
|
| 3 | spllen.t | |- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
|
| 4 | spllen.r | |- ( ph -> R e. Word A ) |
|
| 5 | splval | |- ( ( S e. Word A /\ ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) /\ R e. Word A ) ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
|
| 6 | 1 2 3 4 5 | syl13anc | |- ( ph -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| 7 | 6 | fveq2d | |- ( ph -> ( # ` ( S splice <. F , T , R >. ) ) = ( # ` ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 8 | pfxcl | |- ( S e. Word A -> ( S prefix F ) e. Word A ) |
|
| 9 | 1 8 | syl | |- ( ph -> ( S prefix F ) e. Word A ) |
| 10 | ccatcl | |- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( ( S prefix F ) ++ R ) e. Word A ) |
|
| 11 | 9 4 10 | syl2anc | |- ( ph -> ( ( S prefix F ) ++ R ) e. Word A ) |
| 12 | swrdcl | |- ( S e. Word A -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
|
| 13 | 1 12 | syl | |- ( ph -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
| 14 | ccatlen | |- ( ( ( ( S prefix F ) ++ R ) e. Word A /\ ( S substr <. T , ( # ` S ) >. ) e. Word A ) -> ( # ` ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) ) |
|
| 15 | 11 13 14 | syl2anc | |- ( ph -> ( # ` ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 16 | lencl | |- ( R e. Word A -> ( # ` R ) e. NN0 ) |
|
| 17 | 16 | nn0cnd | |- ( R e. Word A -> ( # ` R ) e. CC ) |
| 18 | 4 17 | syl | |- ( ph -> ( # ` R ) e. CC ) |
| 19 | elfzelz | |- ( F e. ( 0 ... T ) -> F e. ZZ ) |
|
| 20 | 19 | zcnd | |- ( F e. ( 0 ... T ) -> F e. CC ) |
| 21 | 2 20 | syl | |- ( ph -> F e. CC ) |
| 22 | 18 21 | addcld | |- ( ph -> ( ( # ` R ) + F ) e. CC ) |
| 23 | elfzel2 | |- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ZZ ) |
|
| 24 | 23 | zcnd | |- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. CC ) |
| 25 | 3 24 | syl | |- ( ph -> ( # ` S ) e. CC ) |
| 26 | elfzelz | |- ( T e. ( 0 ... ( # ` S ) ) -> T e. ZZ ) |
|
| 27 | 26 | zcnd | |- ( T e. ( 0 ... ( # ` S ) ) -> T e. CC ) |
| 28 | 3 27 | syl | |- ( ph -> T e. CC ) |
| 29 | 22 25 28 | addsub12d | |- ( ph -> ( ( ( # ` R ) + F ) + ( ( # ` S ) - T ) ) = ( ( # ` S ) + ( ( ( # ` R ) + F ) - T ) ) ) |
| 30 | ccatlen | |- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
|
| 31 | 9 4 30 | syl2anc | |- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
| 32 | elfzuz | |- ( F e. ( 0 ... T ) -> F e. ( ZZ>= ` 0 ) ) |
|
| 33 | 2 32 | syl | |- ( ph -> F e. ( ZZ>= ` 0 ) ) |
| 34 | elfzuz3 | |- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ( ZZ>= ` T ) ) |
|
| 35 | 3 34 | syl | |- ( ph -> ( # ` S ) e. ( ZZ>= ` T ) ) |
| 36 | elfzuz3 | |- ( F e. ( 0 ... T ) -> T e. ( ZZ>= ` F ) ) |
|
| 37 | 2 36 | syl | |- ( ph -> T e. ( ZZ>= ` F ) ) |
| 38 | uztrn | |- ( ( ( # ` S ) e. ( ZZ>= ` T ) /\ T e. ( ZZ>= ` F ) ) -> ( # ` S ) e. ( ZZ>= ` F ) ) |
|
| 39 | 35 37 38 | syl2anc | |- ( ph -> ( # ` S ) e. ( ZZ>= ` F ) ) |
| 40 | elfzuzb | |- ( F e. ( 0 ... ( # ` S ) ) <-> ( F e. ( ZZ>= ` 0 ) /\ ( # ` S ) e. ( ZZ>= ` F ) ) ) |
|
| 41 | 33 39 40 | sylanbrc | |- ( ph -> F e. ( 0 ... ( # ` S ) ) ) |
| 42 | pfxlen | |- ( ( S e. Word A /\ F e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix F ) ) = F ) |
|
| 43 | 1 41 42 | syl2anc | |- ( ph -> ( # ` ( S prefix F ) ) = F ) |
| 44 | 43 | oveq1d | |- ( ph -> ( ( # ` ( S prefix F ) ) + ( # ` R ) ) = ( F + ( # ` R ) ) ) |
| 45 | 21 18 | addcomd | |- ( ph -> ( F + ( # ` R ) ) = ( ( # ` R ) + F ) ) |
| 46 | 31 44 45 | 3eqtrd | |- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` R ) + F ) ) |
| 47 | elfzuz2 | |- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ( ZZ>= ` 0 ) ) |
|
| 48 | eluzfz2 | |- ( ( # ` S ) e. ( ZZ>= ` 0 ) -> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
|
| 49 | 3 47 48 | 3syl | |- ( ph -> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
| 50 | swrdlen | |- ( ( S e. Word A /\ T e. ( 0 ... ( # ` S ) ) /\ ( # ` S ) e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S substr <. T , ( # ` S ) >. ) ) = ( ( # ` S ) - T ) ) |
|
| 51 | 1 3 49 50 | syl3anc | |- ( ph -> ( # ` ( S substr <. T , ( # ` S ) >. ) ) = ( ( # ` S ) - T ) ) |
| 52 | 46 51 | oveq12d | |- ( ph -> ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( ( # ` R ) + F ) + ( ( # ` S ) - T ) ) ) |
| 53 | 18 28 21 | subsub3d | |- ( ph -> ( ( # ` R ) - ( T - F ) ) = ( ( ( # ` R ) + F ) - T ) ) |
| 54 | 53 | oveq2d | |- ( ph -> ( ( # ` S ) + ( ( # ` R ) - ( T - F ) ) ) = ( ( # ` S ) + ( ( ( # ` R ) + F ) - T ) ) ) |
| 55 | 29 52 54 | 3eqtr4d | |- ( ph -> ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( # ` S ) + ( ( # ` R ) - ( T - F ) ) ) ) |
| 56 | 7 15 55 | 3eqtrd | |- ( ph -> ( # ` ( S splice <. F , T , R >. ) ) = ( ( # ` S ) + ( ( # ` R ) - ( T - F ) ) ) ) |