This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the substring replacement operator. (Contributed by Stefan O'Rear, 26-Aug-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | splcl | |- ( ( S e. Word A /\ R e. Word A ) -> ( S splice <. F , T , R >. ) e. Word A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( S e. Word A -> S e. _V ) |
|
| 2 | otex | |- <. F , T , R >. e. _V |
|
| 3 | id | |- ( s = S -> s = S ) |
|
| 4 | 2fveq3 | |- ( b = <. F , T , R >. -> ( 1st ` ( 1st ` b ) ) = ( 1st ` ( 1st ` <. F , T , R >. ) ) ) |
|
| 5 | 3 4 | oveqan12d | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( s prefix ( 1st ` ( 1st ` b ) ) ) = ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ) |
| 6 | simpr | |- ( ( s = S /\ b = <. F , T , R >. ) -> b = <. F , T , R >. ) |
|
| 7 | 6 | fveq2d | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( 2nd ` b ) = ( 2nd ` <. F , T , R >. ) ) |
| 8 | 5 7 | oveq12d | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( ( s prefix ( 1st ` ( 1st ` b ) ) ) ++ ( 2nd ` b ) ) = ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) ) |
| 9 | simpl | |- ( ( s = S /\ b = <. F , T , R >. ) -> s = S ) |
|
| 10 | 6 | fveq2d | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( 1st ` b ) = ( 1st ` <. F , T , R >. ) ) |
| 11 | 10 | fveq2d | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( 2nd ` ( 1st ` b ) ) = ( 2nd ` ( 1st ` <. F , T , R >. ) ) ) |
| 12 | 9 | fveq2d | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( # ` s ) = ( # ` S ) ) |
| 13 | 11 12 | opeq12d | |- ( ( s = S /\ b = <. F , T , R >. ) -> <. ( 2nd ` ( 1st ` b ) ) , ( # ` s ) >. = <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) |
| 14 | 9 13 | oveq12d | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( s substr <. ( 2nd ` ( 1st ` b ) ) , ( # ` s ) >. ) = ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) ) |
| 15 | 8 14 | oveq12d | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( ( ( s prefix ( 1st ` ( 1st ` b ) ) ) ++ ( 2nd ` b ) ) ++ ( s substr <. ( 2nd ` ( 1st ` b ) ) , ( # ` s ) >. ) ) = ( ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) ++ ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) ) ) |
| 16 | df-splice | |- splice = ( s e. _V , b e. _V |-> ( ( ( s prefix ( 1st ` ( 1st ` b ) ) ) ++ ( 2nd ` b ) ) ++ ( s substr <. ( 2nd ` ( 1st ` b ) ) , ( # ` s ) >. ) ) ) |
|
| 17 | ovex | |- ( ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) ++ ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) ) e. _V |
|
| 18 | 15 16 17 | ovmpoa | |- ( ( S e. _V /\ <. F , T , R >. e. _V ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) ++ ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) ) ) |
| 19 | 1 2 18 | sylancl | |- ( S e. Word A -> ( S splice <. F , T , R >. ) = ( ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) ++ ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) ) ) |
| 20 | 19 | adantr | |- ( ( S e. Word A /\ R e. Word A ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) ++ ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) ) ) |
| 21 | pfxcl | |- ( S e. Word A -> ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) e. Word A ) |
|
| 22 | 21 | adantr | |- ( ( S e. Word A /\ R e. Word A ) -> ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) e. Word A ) |
| 23 | ot3rdg | |- ( R e. Word A -> ( 2nd ` <. F , T , R >. ) = R ) |
|
| 24 | 23 | adantl | |- ( ( S e. Word A /\ R e. Word A ) -> ( 2nd ` <. F , T , R >. ) = R ) |
| 25 | simpr | |- ( ( S e. Word A /\ R e. Word A ) -> R e. Word A ) |
|
| 26 | 24 25 | eqeltrd | |- ( ( S e. Word A /\ R e. Word A ) -> ( 2nd ` <. F , T , R >. ) e. Word A ) |
| 27 | ccatcl | |- ( ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) e. Word A /\ ( 2nd ` <. F , T , R >. ) e. Word A ) -> ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) e. Word A ) |
|
| 28 | 22 26 27 | syl2anc | |- ( ( S e. Word A /\ R e. Word A ) -> ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) e. Word A ) |
| 29 | swrdcl | |- ( S e. Word A -> ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) e. Word A ) |
|
| 30 | 29 | adantr | |- ( ( S e. Word A /\ R e. Word A ) -> ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) e. Word A ) |
| 31 | ccatcl | |- ( ( ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) e. Word A /\ ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) e. Word A ) -> ( ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) ++ ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) ) e. Word A ) |
|
| 32 | 28 30 31 | syl2anc | |- ( ( S e. Word A /\ R e. Word A ) -> ( ( ( S prefix ( 1st ` ( 1st ` <. F , T , R >. ) ) ) ++ ( 2nd ` <. F , T , R >. ) ) ++ ( S substr <. ( 2nd ` ( 1st ` <. F , T , R >. ) ) , ( # ` S ) >. ) ) e. Word A ) |
| 33 | 20 32 | eqeltrd | |- ( ( S e. Word A /\ R e. Word A ) -> ( S splice <. F , T , R >. ) e. Word A ) |