This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group is a monoid. (Contributed by SN, 1-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpmndd.1 | |- ( ph -> G e. Grp ) |
|
| Assertion | grpmndd | |- ( ph -> G e. Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmndd.1 | |- ( ph -> G e. Grp ) |
|
| 2 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 3 | 1 2 | syl | |- ( ph -> G e. Mnd ) |