This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrds2 | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 2 ) >. ) = <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 | |- <" ( W ` I ) ( W ` ( I + 1 ) ) "> = ( <" ( W ` I ) "> ++ <" ( W ` ( I + 1 ) ) "> ) |
|
| 2 | simp1 | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word A ) |
|
| 3 | simp2 | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. NN0 ) |
|
| 4 | elfzo0 | |- ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( I + 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( I + 1 ) < ( # ` W ) ) ) |
|
| 5 | 4 | simp2bi | |- ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 6 | 5 | 3ad2ant3 | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. NN ) |
| 7 | 3 | nn0red | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. RR ) |
| 8 | peano2nn0 | |- ( I e. NN0 -> ( I + 1 ) e. NN0 ) |
|
| 9 | 3 8 | syl | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. NN0 ) |
| 10 | 9 | nn0red | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. RR ) |
| 11 | 6 | nnred | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. RR ) |
| 12 | 7 | lep1d | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I <_ ( I + 1 ) ) |
| 13 | elfzolt2 | |- ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( I + 1 ) < ( # ` W ) ) |
|
| 14 | 13 | 3ad2ant3 | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) < ( # ` W ) ) |
| 15 | 7 10 11 12 14 | lelttrd | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I < ( # ` W ) ) |
| 16 | elfzo0 | |- ( I e. ( 0 ..^ ( # ` W ) ) <-> ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) ) |
|
| 17 | 3 6 15 16 | syl3anbrc | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( 0 ..^ ( # ` W ) ) ) |
| 18 | swrds1 | |- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( W ` I ) "> ) |
|
| 19 | 2 17 18 | syl2anc | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( W ` I ) "> ) |
| 20 | nn0cn | |- ( I e. NN0 -> I e. CC ) |
|
| 21 | 20 | 3ad2ant2 | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. CC ) |
| 22 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 23 | 22 | oveq2i | |- ( I + 2 ) = ( I + ( 1 + 1 ) ) |
| 24 | ax-1cn | |- 1 e. CC |
|
| 25 | addass | |- ( ( I e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( I + 1 ) + 1 ) = ( I + ( 1 + 1 ) ) ) |
|
| 26 | 24 24 25 | mp3an23 | |- ( I e. CC -> ( ( I + 1 ) + 1 ) = ( I + ( 1 + 1 ) ) ) |
| 27 | 23 26 | eqtr4id | |- ( I e. CC -> ( I + 2 ) = ( ( I + 1 ) + 1 ) ) |
| 28 | 21 27 | syl | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 2 ) = ( ( I + 1 ) + 1 ) ) |
| 29 | 28 | opeq2d | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> <. ( I + 1 ) , ( I + 2 ) >. = <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) |
| 30 | 29 | oveq2d | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) = ( W substr <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) ) |
| 31 | swrds1 | |- ( ( W e. Word A /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) = <" ( W ` ( I + 1 ) ) "> ) |
|
| 32 | 31 | 3adant2 | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) = <" ( W ` ( I + 1 ) ) "> ) |
| 33 | 30 32 | eqtrd | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) = <" ( W ` ( I + 1 ) ) "> ) |
| 34 | 19 33 | oveq12d | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) = ( <" ( W ` I ) "> ++ <" ( W ` ( I + 1 ) ) "> ) ) |
| 35 | 1 34 | eqtr4id | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> <" ( W ` I ) ( W ` ( I + 1 ) ) "> = ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) ) |
| 36 | elfz2nn0 | |- ( I e. ( 0 ... ( I + 1 ) ) <-> ( I e. NN0 /\ ( I + 1 ) e. NN0 /\ I <_ ( I + 1 ) ) ) |
|
| 37 | 3 9 12 36 | syl3anbrc | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( 0 ... ( I + 1 ) ) ) |
| 38 | peano2nn0 | |- ( ( I + 1 ) e. NN0 -> ( ( I + 1 ) + 1 ) e. NN0 ) |
|
| 39 | 9 38 | syl | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I + 1 ) + 1 ) e. NN0 ) |
| 40 | 28 39 | eqeltrd | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 2 ) e. NN0 ) |
| 41 | 10 | lep1d | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) <_ ( ( I + 1 ) + 1 ) ) |
| 42 | 41 28 | breqtrrd | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) <_ ( I + 2 ) ) |
| 43 | elfz2nn0 | |- ( ( I + 1 ) e. ( 0 ... ( I + 2 ) ) <-> ( ( I + 1 ) e. NN0 /\ ( I + 2 ) e. NN0 /\ ( I + 1 ) <_ ( I + 2 ) ) ) |
|
| 44 | 9 40 42 43 | syl3anbrc | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. ( 0 ... ( I + 2 ) ) ) |
| 45 | fzofzp1 | |- ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( ( I + 1 ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
|
| 46 | 45 | 3ad2ant3 | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I + 1 ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
| 47 | 28 46 | eqeltrd | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
| 48 | ccatswrd | |- ( ( W e. Word A /\ ( I e. ( 0 ... ( I + 1 ) ) /\ ( I + 1 ) e. ( 0 ... ( I + 2 ) ) /\ ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) = ( W substr <. I , ( I + 2 ) >. ) ) |
|
| 49 | 2 37 44 47 48 | syl13anc | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) = ( W substr <. I , ( I + 2 ) >. ) ) |
| 50 | 35 49 | eqtr2d | |- ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 2 ) >. ) = <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) |