This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity element of the symmetric group on a set A . (Contributed by Paul Chapman, 25-Jul-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 1-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | symggrp.1 | |- G = ( SymGrp ` A ) |
|
| Assertion | symgid | |- ( A e. V -> ( _I |` A ) = ( 0g ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symggrp.1 | |- G = ( SymGrp ` A ) |
|
| 2 | eqid | |- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) |
|
| 3 | 2 | efmndid | |- ( A e. V -> ( _I |` A ) = ( 0g ` ( EndoFMnd ` A ) ) ) |
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 2 1 4 | symgsubmefmnd | |- ( A e. V -> ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) ) |
| 6 | 1 4 2 | symgressbas | |- G = ( ( EndoFMnd ` A ) |`s ( Base ` G ) ) |
| 7 | eqid | |- ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` ( EndoFMnd ` A ) ) |
|
| 8 | 6 7 | subm0 | |- ( ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) -> ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` G ) ) |
| 9 | 5 8 | syl | |- ( A e. V -> ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` G ) ) |
| 10 | 3 9 | eqtrd | |- ( A e. V -> ( _I |` A ) = ( 0g ` G ) ) |