This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdf | |- ( W e. Word S -> W : ( 0 ..^ ( # ` W ) ) --> S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd | |- ( W e. Word S <-> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
|
| 2 | simpr | |- ( ( l e. NN0 /\ W : ( 0 ..^ l ) --> S ) -> W : ( 0 ..^ l ) --> S ) |
|
| 3 | fnfzo0hash | |- ( ( l e. NN0 /\ W : ( 0 ..^ l ) --> S ) -> ( # ` W ) = l ) |
|
| 4 | 3 | oveq2d | |- ( ( l e. NN0 /\ W : ( 0 ..^ l ) --> S ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ l ) ) |
| 5 | 4 | feq2d | |- ( ( l e. NN0 /\ W : ( 0 ..^ l ) --> S ) -> ( W : ( 0 ..^ ( # ` W ) ) --> S <-> W : ( 0 ..^ l ) --> S ) ) |
| 6 | 2 5 | mpbird | |- ( ( l e. NN0 /\ W : ( 0 ..^ l ) --> S ) -> W : ( 0 ..^ ( # ` W ) ) --> S ) |
| 7 | 6 | rexlimiva | |- ( E. l e. NN0 W : ( 0 ..^ l ) --> S -> W : ( 0 ..^ ( # ` W ) ) --> S ) |
| 8 | 1 7 | sylbi | |- ( W e. Word S -> W : ( 0 ..^ ( # ` W ) ) --> S ) |