This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psgnuni . Given two consequtive transpositions in a representation of a permutation, either they are equal and therefore equivalent to the identity, or they are not and it is possible to commute them such that a chosen point in the left transposition is preserved in the right. By repeating this process, a point can be removed from a representation of the identity. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnunilem1.t | |- T = ran ( pmTrsp ` D ) |
|
| psgnunilem1.d | |- ( ph -> D e. V ) |
||
| psgnunilem1.p | |- ( ph -> P e. T ) |
||
| psgnunilem1.q | |- ( ph -> Q e. T ) |
||
| psgnunilem1.a | |- ( ph -> A e. dom ( P \ _I ) ) |
||
| Assertion | psgnunilem1 | |- ( ph -> ( ( P o. Q ) = ( _I |` D ) \/ E. r e. T E. s e. T ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnunilem1.t | |- T = ran ( pmTrsp ` D ) |
|
| 2 | psgnunilem1.d | |- ( ph -> D e. V ) |
|
| 3 | psgnunilem1.p | |- ( ph -> P e. T ) |
|
| 4 | psgnunilem1.q | |- ( ph -> Q e. T ) |
|
| 5 | psgnunilem1.a | |- ( ph -> A e. dom ( P \ _I ) ) |
|
| 6 | eqid | |- ( pmTrsp ` D ) = ( pmTrsp ` D ) |
|
| 7 | 6 1 | pmtrfinv | |- ( Q e. T -> ( Q o. Q ) = ( _I |` D ) ) |
| 8 | 4 7 | syl | |- ( ph -> ( Q o. Q ) = ( _I |` D ) ) |
| 9 | coeq1 | |- ( P = Q -> ( P o. Q ) = ( Q o. Q ) ) |
|
| 10 | 9 | eqeq1d | |- ( P = Q -> ( ( P o. Q ) = ( _I |` D ) <-> ( Q o. Q ) = ( _I |` D ) ) ) |
| 11 | 8 10 | syl5ibrcom | |- ( ph -> ( P = Q -> ( P o. Q ) = ( _I |` D ) ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ A e. dom ( Q \ _I ) ) -> ( P = Q -> ( P o. Q ) = ( _I |` D ) ) ) |
| 13 | 12 | imp | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P = Q ) -> ( P o. Q ) = ( _I |` D ) ) |
| 14 | 13 | orcd | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P = Q ) -> ( ( P o. Q ) = ( _I |` D ) \/ E. r e. T E. s e. T ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) |
| 15 | 6 1 | pmtrfcnv | |- ( P e. T -> `' P = P ) |
| 16 | 3 15 | syl | |- ( ph -> `' P = P ) |
| 17 | 16 | eqcomd | |- ( ph -> P = `' P ) |
| 18 | 17 | coeq2d | |- ( ph -> ( ( P o. Q ) o. P ) = ( ( P o. Q ) o. `' P ) ) |
| 19 | 6 1 | pmtrff1o | |- ( P e. T -> P : D -1-1-onto-> D ) |
| 20 | 3 19 | syl | |- ( ph -> P : D -1-1-onto-> D ) |
| 21 | 6 1 | pmtrfconj | |- ( ( Q e. T /\ P : D -1-1-onto-> D ) -> ( ( P o. Q ) o. `' P ) e. T ) |
| 22 | 4 20 21 | syl2anc | |- ( ph -> ( ( P o. Q ) o. `' P ) e. T ) |
| 23 | 18 22 | eqeltrd | |- ( ph -> ( ( P o. Q ) o. P ) e. T ) |
| 24 | 23 | ad2antrr | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P =/= Q ) -> ( ( P o. Q ) o. P ) e. T ) |
| 25 | 3 | ad2antrr | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P =/= Q ) -> P e. T ) |
| 26 | coass | |- ( ( ( P o. Q ) o. P ) o. P ) = ( ( P o. Q ) o. ( P o. P ) ) |
|
| 27 | 6 1 | pmtrfinv | |- ( P e. T -> ( P o. P ) = ( _I |` D ) ) |
| 28 | 3 27 | syl | |- ( ph -> ( P o. P ) = ( _I |` D ) ) |
| 29 | 28 | coeq2d | |- ( ph -> ( ( P o. Q ) o. ( P o. P ) ) = ( ( P o. Q ) o. ( _I |` D ) ) ) |
| 30 | f1of | |- ( P : D -1-1-onto-> D -> P : D --> D ) |
|
| 31 | 20 30 | syl | |- ( ph -> P : D --> D ) |
| 32 | 6 1 | pmtrff1o | |- ( Q e. T -> Q : D -1-1-onto-> D ) |
| 33 | 4 32 | syl | |- ( ph -> Q : D -1-1-onto-> D ) |
| 34 | f1of | |- ( Q : D -1-1-onto-> D -> Q : D --> D ) |
|
| 35 | 33 34 | syl | |- ( ph -> Q : D --> D ) |
| 36 | fco | |- ( ( P : D --> D /\ Q : D --> D ) -> ( P o. Q ) : D --> D ) |
|
| 37 | 31 35 36 | syl2anc | |- ( ph -> ( P o. Q ) : D --> D ) |
| 38 | fcoi1 | |- ( ( P o. Q ) : D --> D -> ( ( P o. Q ) o. ( _I |` D ) ) = ( P o. Q ) ) |
|
| 39 | 37 38 | syl | |- ( ph -> ( ( P o. Q ) o. ( _I |` D ) ) = ( P o. Q ) ) |
| 40 | 29 39 | eqtrd | |- ( ph -> ( ( P o. Q ) o. ( P o. P ) ) = ( P o. Q ) ) |
| 41 | 26 40 | eqtr2id | |- ( ph -> ( P o. Q ) = ( ( ( P o. Q ) o. P ) o. P ) ) |
| 42 | 41 | ad2antrr | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P =/= Q ) -> ( P o. Q ) = ( ( ( P o. Q ) o. P ) o. P ) ) |
| 43 | 5 | ad2antrr | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P =/= Q ) -> A e. dom ( P \ _I ) ) |
| 44 | 20 | adantr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> P : D -1-1-onto-> D ) |
| 45 | 33 | adantr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> Q : D -1-1-onto-> D ) |
| 46 | 6 1 | pmtrfb | |- ( P e. T <-> ( D e. _V /\ P : D -1-1-onto-> D /\ dom ( P \ _I ) ~~ 2o ) ) |
| 47 | 46 | simp3bi | |- ( P e. T -> dom ( P \ _I ) ~~ 2o ) |
| 48 | 3 47 | syl | |- ( ph -> dom ( P \ _I ) ~~ 2o ) |
| 49 | 48 | adantr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> dom ( P \ _I ) ~~ 2o ) |
| 50 | 2onn | |- 2o e. _om |
|
| 51 | nnfi | |- ( 2o e. _om -> 2o e. Fin ) |
|
| 52 | 50 51 | ax-mp | |- 2o e. Fin |
| 53 | 6 1 | pmtrfb | |- ( Q e. T <-> ( D e. _V /\ Q : D -1-1-onto-> D /\ dom ( Q \ _I ) ~~ 2o ) ) |
| 54 | 53 | simp3bi | |- ( Q e. T -> dom ( Q \ _I ) ~~ 2o ) |
| 55 | 4 54 | syl | |- ( ph -> dom ( Q \ _I ) ~~ 2o ) |
| 56 | enfi | |- ( dom ( Q \ _I ) ~~ 2o -> ( dom ( Q \ _I ) e. Fin <-> 2o e. Fin ) ) |
|
| 57 | 55 56 | syl | |- ( ph -> ( dom ( Q \ _I ) e. Fin <-> 2o e. Fin ) ) |
| 58 | 52 57 | mpbiri | |- ( ph -> dom ( Q \ _I ) e. Fin ) |
| 59 | 58 | adantr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> dom ( Q \ _I ) e. Fin ) |
| 60 | 5 | adantr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> A e. dom ( P \ _I ) ) |
| 61 | en2eleq | |- ( ( A e. dom ( P \ _I ) /\ dom ( P \ _I ) ~~ 2o ) -> dom ( P \ _I ) = { A , U. ( dom ( P \ _I ) \ { A } ) } ) |
|
| 62 | 60 49 61 | syl2anc | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> dom ( P \ _I ) = { A , U. ( dom ( P \ _I ) \ { A } ) } ) |
| 63 | simprl | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> A e. dom ( Q \ _I ) ) |
|
| 64 | f1ofn | |- ( P : D -1-1-onto-> D -> P Fn D ) |
|
| 65 | 20 64 | syl | |- ( ph -> P Fn D ) |
| 66 | 65 | adantr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> P Fn D ) |
| 67 | fimass | |- ( P : D --> D -> ( P " dom ( Q \ _I ) ) C_ D ) |
|
| 68 | 31 67 | syl | |- ( ph -> ( P " dom ( Q \ _I ) ) C_ D ) |
| 69 | 68 | adantr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> ( P " dom ( Q \ _I ) ) C_ D ) |
| 70 | simprr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> A e. ( P " dom ( Q \ _I ) ) ) |
|
| 71 | fnfvima | |- ( ( P Fn D /\ ( P " dom ( Q \ _I ) ) C_ D /\ A e. ( P " dom ( Q \ _I ) ) ) -> ( P ` A ) e. ( P " ( P " dom ( Q \ _I ) ) ) ) |
|
| 72 | 66 69 70 71 | syl3anc | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> ( P ` A ) e. ( P " ( P " dom ( Q \ _I ) ) ) ) |
| 73 | difss | |- ( P \ _I ) C_ P |
|
| 74 | dmss | |- ( ( P \ _I ) C_ P -> dom ( P \ _I ) C_ dom P ) |
|
| 75 | 73 74 | ax-mp | |- dom ( P \ _I ) C_ dom P |
| 76 | f1odm | |- ( P : D -1-1-onto-> D -> dom P = D ) |
|
| 77 | 20 76 | syl | |- ( ph -> dom P = D ) |
| 78 | 75 77 | sseqtrid | |- ( ph -> dom ( P \ _I ) C_ D ) |
| 79 | 78 5 | sseldd | |- ( ph -> A e. D ) |
| 80 | eqid | |- dom ( P \ _I ) = dom ( P \ _I ) |
|
| 81 | 6 1 80 | pmtrffv | |- ( ( P e. T /\ A e. D ) -> ( P ` A ) = if ( A e. dom ( P \ _I ) , U. ( dom ( P \ _I ) \ { A } ) , A ) ) |
| 82 | 3 79 81 | syl2anc | |- ( ph -> ( P ` A ) = if ( A e. dom ( P \ _I ) , U. ( dom ( P \ _I ) \ { A } ) , A ) ) |
| 83 | 5 | iftrued | |- ( ph -> if ( A e. dom ( P \ _I ) , U. ( dom ( P \ _I ) \ { A } ) , A ) = U. ( dom ( P \ _I ) \ { A } ) ) |
| 84 | 82 83 | eqtrd | |- ( ph -> ( P ` A ) = U. ( dom ( P \ _I ) \ { A } ) ) |
| 85 | 84 | adantr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> ( P ` A ) = U. ( dom ( P \ _I ) \ { A } ) ) |
| 86 | imaco | |- ( ( P o. P ) " dom ( Q \ _I ) ) = ( P " ( P " dom ( Q \ _I ) ) ) |
|
| 87 | 28 | imaeq1d | |- ( ph -> ( ( P o. P ) " dom ( Q \ _I ) ) = ( ( _I |` D ) " dom ( Q \ _I ) ) ) |
| 88 | difss | |- ( Q \ _I ) C_ Q |
|
| 89 | dmss | |- ( ( Q \ _I ) C_ Q -> dom ( Q \ _I ) C_ dom Q ) |
|
| 90 | 88 89 | ax-mp | |- dom ( Q \ _I ) C_ dom Q |
| 91 | f1odm | |- ( Q : D -1-1-onto-> D -> dom Q = D ) |
|
| 92 | 90 91 | sseqtrid | |- ( Q : D -1-1-onto-> D -> dom ( Q \ _I ) C_ D ) |
| 93 | 33 92 | syl | |- ( ph -> dom ( Q \ _I ) C_ D ) |
| 94 | resiima | |- ( dom ( Q \ _I ) C_ D -> ( ( _I |` D ) " dom ( Q \ _I ) ) = dom ( Q \ _I ) ) |
|
| 95 | 93 94 | syl | |- ( ph -> ( ( _I |` D ) " dom ( Q \ _I ) ) = dom ( Q \ _I ) ) |
| 96 | 87 95 | eqtrd | |- ( ph -> ( ( P o. P ) " dom ( Q \ _I ) ) = dom ( Q \ _I ) ) |
| 97 | 86 96 | eqtr3id | |- ( ph -> ( P " ( P " dom ( Q \ _I ) ) ) = dom ( Q \ _I ) ) |
| 98 | 97 | adantr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> ( P " ( P " dom ( Q \ _I ) ) ) = dom ( Q \ _I ) ) |
| 99 | 72 85 98 | 3eltr3d | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> U. ( dom ( P \ _I ) \ { A } ) e. dom ( Q \ _I ) ) |
| 100 | 63 99 | prssd | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> { A , U. ( dom ( P \ _I ) \ { A } ) } C_ dom ( Q \ _I ) ) |
| 101 | 62 100 | eqsstrd | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> dom ( P \ _I ) C_ dom ( Q \ _I ) ) |
| 102 | 55 | ensymd | |- ( ph -> 2o ~~ dom ( Q \ _I ) ) |
| 103 | entr | |- ( ( dom ( P \ _I ) ~~ 2o /\ 2o ~~ dom ( Q \ _I ) ) -> dom ( P \ _I ) ~~ dom ( Q \ _I ) ) |
|
| 104 | 48 102 103 | syl2anc | |- ( ph -> dom ( P \ _I ) ~~ dom ( Q \ _I ) ) |
| 105 | 104 | adantr | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> dom ( P \ _I ) ~~ dom ( Q \ _I ) ) |
| 106 | fisseneq | |- ( ( dom ( Q \ _I ) e. Fin /\ dom ( P \ _I ) C_ dom ( Q \ _I ) /\ dom ( P \ _I ) ~~ dom ( Q \ _I ) ) -> dom ( P \ _I ) = dom ( Q \ _I ) ) |
|
| 107 | 59 101 105 106 | syl3anc | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> dom ( P \ _I ) = dom ( Q \ _I ) ) |
| 108 | 107 | eqcomd | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> dom ( Q \ _I ) = dom ( P \ _I ) ) |
| 109 | f1otrspeq | |- ( ( ( P : D -1-1-onto-> D /\ Q : D -1-1-onto-> D ) /\ ( dom ( P \ _I ) ~~ 2o /\ dom ( Q \ _I ) = dom ( P \ _I ) ) ) -> P = Q ) |
|
| 110 | 44 45 49 108 109 | syl22anc | |- ( ( ph /\ ( A e. dom ( Q \ _I ) /\ A e. ( P " dom ( Q \ _I ) ) ) ) -> P = Q ) |
| 111 | 110 | expr | |- ( ( ph /\ A e. dom ( Q \ _I ) ) -> ( A e. ( P " dom ( Q \ _I ) ) -> P = Q ) ) |
| 112 | 111 | necon3ad | |- ( ( ph /\ A e. dom ( Q \ _I ) ) -> ( P =/= Q -> -. A e. ( P " dom ( Q \ _I ) ) ) ) |
| 113 | 112 | imp | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P =/= Q ) -> -. A e. ( P " dom ( Q \ _I ) ) ) |
| 114 | 18 | difeq1d | |- ( ph -> ( ( ( P o. Q ) o. P ) \ _I ) = ( ( ( P o. Q ) o. `' P ) \ _I ) ) |
| 115 | 114 | dmeqd | |- ( ph -> dom ( ( ( P o. Q ) o. P ) \ _I ) = dom ( ( ( P o. Q ) o. `' P ) \ _I ) ) |
| 116 | f1omvdconj | |- ( ( Q : D --> D /\ P : D -1-1-onto-> D ) -> dom ( ( ( P o. Q ) o. `' P ) \ _I ) = ( P " dom ( Q \ _I ) ) ) |
|
| 117 | 35 20 116 | syl2anc | |- ( ph -> dom ( ( ( P o. Q ) o. `' P ) \ _I ) = ( P " dom ( Q \ _I ) ) ) |
| 118 | 115 117 | eqtrd | |- ( ph -> dom ( ( ( P o. Q ) o. P ) \ _I ) = ( P " dom ( Q \ _I ) ) ) |
| 119 | 118 | eleq2d | |- ( ph -> ( A e. dom ( ( ( P o. Q ) o. P ) \ _I ) <-> A e. ( P " dom ( Q \ _I ) ) ) ) |
| 120 | 119 | ad2antrr | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P =/= Q ) -> ( A e. dom ( ( ( P o. Q ) o. P ) \ _I ) <-> A e. ( P " dom ( Q \ _I ) ) ) ) |
| 121 | 113 120 | mtbird | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P =/= Q ) -> -. A e. dom ( ( ( P o. Q ) o. P ) \ _I ) ) |
| 122 | coeq1 | |- ( r = ( ( P o. Q ) o. P ) -> ( r o. s ) = ( ( ( P o. Q ) o. P ) o. s ) ) |
|
| 123 | 122 | eqeq2d | |- ( r = ( ( P o. Q ) o. P ) -> ( ( P o. Q ) = ( r o. s ) <-> ( P o. Q ) = ( ( ( P o. Q ) o. P ) o. s ) ) ) |
| 124 | difeq1 | |- ( r = ( ( P o. Q ) o. P ) -> ( r \ _I ) = ( ( ( P o. Q ) o. P ) \ _I ) ) |
|
| 125 | 124 | dmeqd | |- ( r = ( ( P o. Q ) o. P ) -> dom ( r \ _I ) = dom ( ( ( P o. Q ) o. P ) \ _I ) ) |
| 126 | 125 | eleq2d | |- ( r = ( ( P o. Q ) o. P ) -> ( A e. dom ( r \ _I ) <-> A e. dom ( ( ( P o. Q ) o. P ) \ _I ) ) ) |
| 127 | 126 | notbid | |- ( r = ( ( P o. Q ) o. P ) -> ( -. A e. dom ( r \ _I ) <-> -. A e. dom ( ( ( P o. Q ) o. P ) \ _I ) ) ) |
| 128 | 123 127 | 3anbi13d | |- ( r = ( ( P o. Q ) o. P ) -> ( ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) <-> ( ( P o. Q ) = ( ( ( P o. Q ) o. P ) o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( ( ( P o. Q ) o. P ) \ _I ) ) ) ) |
| 129 | coeq2 | |- ( s = P -> ( ( ( P o. Q ) o. P ) o. s ) = ( ( ( P o. Q ) o. P ) o. P ) ) |
|
| 130 | 129 | eqeq2d | |- ( s = P -> ( ( P o. Q ) = ( ( ( P o. Q ) o. P ) o. s ) <-> ( P o. Q ) = ( ( ( P o. Q ) o. P ) o. P ) ) ) |
| 131 | difeq1 | |- ( s = P -> ( s \ _I ) = ( P \ _I ) ) |
|
| 132 | 131 | dmeqd | |- ( s = P -> dom ( s \ _I ) = dom ( P \ _I ) ) |
| 133 | 132 | eleq2d | |- ( s = P -> ( A e. dom ( s \ _I ) <-> A e. dom ( P \ _I ) ) ) |
| 134 | 130 133 | 3anbi12d | |- ( s = P -> ( ( ( P o. Q ) = ( ( ( P o. Q ) o. P ) o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( ( ( P o. Q ) o. P ) \ _I ) ) <-> ( ( P o. Q ) = ( ( ( P o. Q ) o. P ) o. P ) /\ A e. dom ( P \ _I ) /\ -. A e. dom ( ( ( P o. Q ) o. P ) \ _I ) ) ) ) |
| 135 | 128 134 | rspc2ev | |- ( ( ( ( P o. Q ) o. P ) e. T /\ P e. T /\ ( ( P o. Q ) = ( ( ( P o. Q ) o. P ) o. P ) /\ A e. dom ( P \ _I ) /\ -. A e. dom ( ( ( P o. Q ) o. P ) \ _I ) ) ) -> E. r e. T E. s e. T ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) |
| 136 | 24 25 42 43 121 135 | syl113anc | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P =/= Q ) -> E. r e. T E. s e. T ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) |
| 137 | 136 | olcd | |- ( ( ( ph /\ A e. dom ( Q \ _I ) ) /\ P =/= Q ) -> ( ( P o. Q ) = ( _I |` D ) \/ E. r e. T E. s e. T ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) |
| 138 | 14 137 | pm2.61dane | |- ( ( ph /\ A e. dom ( Q \ _I ) ) -> ( ( P o. Q ) = ( _I |` D ) \/ E. r e. T E. s e. T ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) |
| 139 | 4 | adantr | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> Q e. T ) |
| 140 | coass | |- ( ( Q o. P ) o. Q ) = ( Q o. ( P o. Q ) ) |
|
| 141 | 6 1 | pmtrfcnv | |- ( Q e. T -> `' Q = Q ) |
| 142 | 4 141 | syl | |- ( ph -> `' Q = Q ) |
| 143 | 142 | eqcomd | |- ( ph -> Q = `' Q ) |
| 144 | 143 | coeq2d | |- ( ph -> ( ( Q o. P ) o. Q ) = ( ( Q o. P ) o. `' Q ) ) |
| 145 | 140 144 | eqtr3id | |- ( ph -> ( Q o. ( P o. Q ) ) = ( ( Q o. P ) o. `' Q ) ) |
| 146 | 6 1 | pmtrfconj | |- ( ( P e. T /\ Q : D -1-1-onto-> D ) -> ( ( Q o. P ) o. `' Q ) e. T ) |
| 147 | 3 33 146 | syl2anc | |- ( ph -> ( ( Q o. P ) o. `' Q ) e. T ) |
| 148 | 145 147 | eqeltrd | |- ( ph -> ( Q o. ( P o. Q ) ) e. T ) |
| 149 | 148 | adantr | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> ( Q o. ( P o. Q ) ) e. T ) |
| 150 | 8 | coeq1d | |- ( ph -> ( ( Q o. Q ) o. ( P o. Q ) ) = ( ( _I |` D ) o. ( P o. Q ) ) ) |
| 151 | fcoi2 | |- ( ( P o. Q ) : D --> D -> ( ( _I |` D ) o. ( P o. Q ) ) = ( P o. Q ) ) |
|
| 152 | 37 151 | syl | |- ( ph -> ( ( _I |` D ) o. ( P o. Q ) ) = ( P o. Q ) ) |
| 153 | 150 152 | eqtr2d | |- ( ph -> ( P o. Q ) = ( ( Q o. Q ) o. ( P o. Q ) ) ) |
| 154 | coass | |- ( ( Q o. Q ) o. ( P o. Q ) ) = ( Q o. ( Q o. ( P o. Q ) ) ) |
|
| 155 | 153 154 | eqtrdi | |- ( ph -> ( P o. Q ) = ( Q o. ( Q o. ( P o. Q ) ) ) ) |
| 156 | 155 | adantr | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> ( P o. Q ) = ( Q o. ( Q o. ( P o. Q ) ) ) ) |
| 157 | f1ofn | |- ( Q : D -1-1-onto-> D -> Q Fn D ) |
|
| 158 | 33 157 | syl | |- ( ph -> Q Fn D ) |
| 159 | fnelnfp | |- ( ( Q Fn D /\ A e. D ) -> ( A e. dom ( Q \ _I ) <-> ( Q ` A ) =/= A ) ) |
|
| 160 | 158 79 159 | syl2anc | |- ( ph -> ( A e. dom ( Q \ _I ) <-> ( Q ` A ) =/= A ) ) |
| 161 | 160 | necon2bbid | |- ( ph -> ( ( Q ` A ) = A <-> -. A e. dom ( Q \ _I ) ) ) |
| 162 | 161 | biimpar | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> ( Q ` A ) = A ) |
| 163 | fnfvima | |- ( ( Q Fn D /\ dom ( P \ _I ) C_ D /\ A e. dom ( P \ _I ) ) -> ( Q ` A ) e. ( Q " dom ( P \ _I ) ) ) |
|
| 164 | 158 78 5 163 | syl3anc | |- ( ph -> ( Q ` A ) e. ( Q " dom ( P \ _I ) ) ) |
| 165 | 164 | adantr | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> ( Q ` A ) e. ( Q " dom ( P \ _I ) ) ) |
| 166 | 162 165 | eqeltrrd | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> A e. ( Q " dom ( P \ _I ) ) ) |
| 167 | 145 | difeq1d | |- ( ph -> ( ( Q o. ( P o. Q ) ) \ _I ) = ( ( ( Q o. P ) o. `' Q ) \ _I ) ) |
| 168 | 167 | dmeqd | |- ( ph -> dom ( ( Q o. ( P o. Q ) ) \ _I ) = dom ( ( ( Q o. P ) o. `' Q ) \ _I ) ) |
| 169 | f1omvdconj | |- ( ( P : D --> D /\ Q : D -1-1-onto-> D ) -> dom ( ( ( Q o. P ) o. `' Q ) \ _I ) = ( Q " dom ( P \ _I ) ) ) |
|
| 170 | 31 33 169 | syl2anc | |- ( ph -> dom ( ( ( Q o. P ) o. `' Q ) \ _I ) = ( Q " dom ( P \ _I ) ) ) |
| 171 | 168 170 | eqtrd | |- ( ph -> dom ( ( Q o. ( P o. Q ) ) \ _I ) = ( Q " dom ( P \ _I ) ) ) |
| 172 | 171 | adantr | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> dom ( ( Q o. ( P o. Q ) ) \ _I ) = ( Q " dom ( P \ _I ) ) ) |
| 173 | 166 172 | eleqtrrd | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> A e. dom ( ( Q o. ( P o. Q ) ) \ _I ) ) |
| 174 | simpr | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> -. A e. dom ( Q \ _I ) ) |
|
| 175 | coeq1 | |- ( r = Q -> ( r o. s ) = ( Q o. s ) ) |
|
| 176 | 175 | eqeq2d | |- ( r = Q -> ( ( P o. Q ) = ( r o. s ) <-> ( P o. Q ) = ( Q o. s ) ) ) |
| 177 | difeq1 | |- ( r = Q -> ( r \ _I ) = ( Q \ _I ) ) |
|
| 178 | 177 | dmeqd | |- ( r = Q -> dom ( r \ _I ) = dom ( Q \ _I ) ) |
| 179 | 178 | eleq2d | |- ( r = Q -> ( A e. dom ( r \ _I ) <-> A e. dom ( Q \ _I ) ) ) |
| 180 | 179 | notbid | |- ( r = Q -> ( -. A e. dom ( r \ _I ) <-> -. A e. dom ( Q \ _I ) ) ) |
| 181 | 176 180 | 3anbi13d | |- ( r = Q -> ( ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) <-> ( ( P o. Q ) = ( Q o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( Q \ _I ) ) ) ) |
| 182 | coeq2 | |- ( s = ( Q o. ( P o. Q ) ) -> ( Q o. s ) = ( Q o. ( Q o. ( P o. Q ) ) ) ) |
|
| 183 | 182 | eqeq2d | |- ( s = ( Q o. ( P o. Q ) ) -> ( ( P o. Q ) = ( Q o. s ) <-> ( P o. Q ) = ( Q o. ( Q o. ( P o. Q ) ) ) ) ) |
| 184 | difeq1 | |- ( s = ( Q o. ( P o. Q ) ) -> ( s \ _I ) = ( ( Q o. ( P o. Q ) ) \ _I ) ) |
|
| 185 | 184 | dmeqd | |- ( s = ( Q o. ( P o. Q ) ) -> dom ( s \ _I ) = dom ( ( Q o. ( P o. Q ) ) \ _I ) ) |
| 186 | 185 | eleq2d | |- ( s = ( Q o. ( P o. Q ) ) -> ( A e. dom ( s \ _I ) <-> A e. dom ( ( Q o. ( P o. Q ) ) \ _I ) ) ) |
| 187 | 183 186 | 3anbi12d | |- ( s = ( Q o. ( P o. Q ) ) -> ( ( ( P o. Q ) = ( Q o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( Q \ _I ) ) <-> ( ( P o. Q ) = ( Q o. ( Q o. ( P o. Q ) ) ) /\ A e. dom ( ( Q o. ( P o. Q ) ) \ _I ) /\ -. A e. dom ( Q \ _I ) ) ) ) |
| 188 | 181 187 | rspc2ev | |- ( ( Q e. T /\ ( Q o. ( P o. Q ) ) e. T /\ ( ( P o. Q ) = ( Q o. ( Q o. ( P o. Q ) ) ) /\ A e. dom ( ( Q o. ( P o. Q ) ) \ _I ) /\ -. A e. dom ( Q \ _I ) ) ) -> E. r e. T E. s e. T ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) |
| 189 | 139 149 156 173 174 188 | syl113anc | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> E. r e. T E. s e. T ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) |
| 190 | 189 | olcd | |- ( ( ph /\ -. A e. dom ( Q \ _I ) ) -> ( ( P o. Q ) = ( _I |` D ) \/ E. r e. T E. s e. T ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) |
| 191 | 138 190 | pm2.61dan | |- ( ph -> ( ( P o. Q ) = ( _I |` D ) \/ E. r e. T E. s e. T ( ( P o. Q ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) |