This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfz2nn0 | |- ( K e. ( 0 ... N ) <-> ( K e. NN0 /\ N e. NN0 /\ K <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0uz | |- ( K e. NN0 <-> K e. ( ZZ>= ` 0 ) ) |
|
| 2 | 1 | anbi1i | |- ( ( K e. NN0 /\ N e. ( ZZ>= ` K ) ) <-> ( K e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` K ) ) ) |
| 3 | eluznn0 | |- ( ( K e. NN0 /\ N e. ( ZZ>= ` K ) ) -> N e. NN0 ) |
|
| 4 | eluzle | |- ( N e. ( ZZ>= ` K ) -> K <_ N ) |
|
| 5 | 4 | adantl | |- ( ( K e. NN0 /\ N e. ( ZZ>= ` K ) ) -> K <_ N ) |
| 6 | 3 5 | jca | |- ( ( K e. NN0 /\ N e. ( ZZ>= ` K ) ) -> ( N e. NN0 /\ K <_ N ) ) |
| 7 | nn0z | |- ( K e. NN0 -> K e. ZZ ) |
|
| 8 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 9 | eluz | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` K ) <-> K <_ N ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( K e. NN0 /\ N e. NN0 ) -> ( N e. ( ZZ>= ` K ) <-> K <_ N ) ) |
| 11 | 10 | biimprd | |- ( ( K e. NN0 /\ N e. NN0 ) -> ( K <_ N -> N e. ( ZZ>= ` K ) ) ) |
| 12 | 11 | impr | |- ( ( K e. NN0 /\ ( N e. NN0 /\ K <_ N ) ) -> N e. ( ZZ>= ` K ) ) |
| 13 | 6 12 | impbida | |- ( K e. NN0 -> ( N e. ( ZZ>= ` K ) <-> ( N e. NN0 /\ K <_ N ) ) ) |
| 14 | 13 | pm5.32i | |- ( ( K e. NN0 /\ N e. ( ZZ>= ` K ) ) <-> ( K e. NN0 /\ ( N e. NN0 /\ K <_ N ) ) ) |
| 15 | 2 14 | bitr3i | |- ( ( K e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` K ) ) <-> ( K e. NN0 /\ ( N e. NN0 /\ K <_ N ) ) ) |
| 16 | elfzuzb | |- ( K e. ( 0 ... N ) <-> ( K e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` K ) ) ) |
|
| 17 | 3anass | |- ( ( K e. NN0 /\ N e. NN0 /\ K <_ N ) <-> ( K e. NN0 /\ ( N e. NN0 /\ K <_ N ) ) ) |
|
| 18 | 15 16 17 | 3bitr4i | |- ( K e. ( 0 ... N ) <-> ( K e. NN0 /\ N e. NN0 /\ K <_ N ) ) |