This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gsum0.z | |- .0. = ( 0g ` G ) |
|
| Assertion | gsum0 | |- ( G gsum (/) ) = .0. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum0.z | |- .0. = ( 0g ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | eqid | |- { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } = { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } |
|
| 5 | id | |- ( G e. _V -> G e. _V ) |
|
| 6 | 0ex | |- (/) e. _V |
|
| 7 | 6 | a1i | |- ( G e. _V -> (/) e. _V ) |
| 8 | f0 | |- (/) : (/) --> { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } |
|
| 9 | 8 | a1i | |- ( G e. _V -> (/) : (/) --> { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } ) |
| 10 | 2 1 3 4 5 7 9 | gsumval1 | |- ( G e. _V -> ( G gsum (/) ) = .0. ) |
| 11 | df-gsum | |- gsum = ( w e. _V , f e. _V |-> [_ { x e. ( Base ` w ) | A. y e. ( Base ` w ) ( ( x ( +g ` w ) y ) = y /\ ( y ( +g ` w ) x ) = y ) } / o ]_ if ( ran f C_ o , ( 0g ` w ) , if ( dom f e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom f = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , f ) ` n ) ) ) , ( iota x E. g [. ( `' f " ( _V \ o ) ) / y ]. ( g : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( f o. g ) ) ` ( # ` y ) ) ) ) ) ) ) |
|
| 12 | 11 | reldmmpo | |- Rel dom gsum |
| 13 | 12 | ovprc1 | |- ( -. G e. _V -> ( G gsum (/) ) = (/) ) |
| 14 | fvprc | |- ( -. G e. _V -> ( 0g ` G ) = (/) ) |
|
| 15 | 1 14 | eqtrid | |- ( -. G e. _V -> .0. = (/) ) |
| 16 | 13 15 | eqtr4d | |- ( -. G e. _V -> ( G gsum (/) ) = .0. ) |
| 17 | 10 16 | pm2.61i | |- ( G gsum (/) ) = .0. |