This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo0 | |- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. NN /\ A < B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzouz | |- ( A e. ( 0 ..^ B ) -> A e. ( ZZ>= ` 0 ) ) |
|
| 2 | elnn0uz | |- ( A e. NN0 <-> A e. ( ZZ>= ` 0 ) ) |
|
| 3 | 1 2 | sylibr | |- ( A e. ( 0 ..^ B ) -> A e. NN0 ) |
| 4 | elfzolt3b | |- ( A e. ( 0 ..^ B ) -> 0 e. ( 0 ..^ B ) ) |
|
| 5 | lbfzo0 | |- ( 0 e. ( 0 ..^ B ) <-> B e. NN ) |
|
| 6 | 4 5 | sylib | |- ( A e. ( 0 ..^ B ) -> B e. NN ) |
| 7 | elfzolt2 | |- ( A e. ( 0 ..^ B ) -> A < B ) |
|
| 8 | 3 6 7 | 3jca | |- ( A e. ( 0 ..^ B ) -> ( A e. NN0 /\ B e. NN /\ A < B ) ) |
| 9 | simp1 | |- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> A e. NN0 ) |
|
| 10 | 9 2 | sylib | |- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> A e. ( ZZ>= ` 0 ) ) |
| 11 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 12 | 11 | 3ad2ant2 | |- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> B e. ZZ ) |
| 13 | simp3 | |- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> A < B ) |
|
| 14 | elfzo2 | |- ( A e. ( 0 ..^ B ) <-> ( A e. ( ZZ>= ` 0 ) /\ B e. ZZ /\ A < B ) ) |
|
| 15 | 10 12 13 14 | syl3anbrc | |- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> A e. ( 0 ..^ B ) ) |
| 16 | 8 15 | impbii | |- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. NN /\ A < B ) ) |