This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | |- A = ( N Mat R ) |
|
| mdetuni.b | |- B = ( Base ` A ) |
||
| mdetuni.k | |- K = ( Base ` R ) |
||
| mdetuni.0g | |- .0. = ( 0g ` R ) |
||
| mdetuni.1r | |- .1. = ( 1r ` R ) |
||
| mdetuni.pg | |- .+ = ( +g ` R ) |
||
| mdetuni.tg | |- .x. = ( .r ` R ) |
||
| mdetuni.n | |- ( ph -> N e. Fin ) |
||
| mdetuni.r | |- ( ph -> R e. Ring ) |
||
| mdetuni.ff | |- ( ph -> D : B --> K ) |
||
| mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
||
| mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
||
| mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
||
| Assertion | mdetunilem7 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | |- A = ( N Mat R ) |
|
| 2 | mdetuni.b | |- B = ( Base ` A ) |
|
| 3 | mdetuni.k | |- K = ( Base ` R ) |
|
| 4 | mdetuni.0g | |- .0. = ( 0g ` R ) |
|
| 5 | mdetuni.1r | |- .1. = ( 1r ` R ) |
|
| 6 | mdetuni.pg | |- .+ = ( +g ` R ) |
|
| 7 | mdetuni.tg | |- .x. = ( .r ` R ) |
|
| 8 | mdetuni.n | |- ( ph -> N e. Fin ) |
|
| 9 | mdetuni.r | |- ( ph -> R e. Ring ) |
|
| 10 | mdetuni.ff | |- ( ph -> D : B --> K ) |
|
| 11 | mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
|
| 12 | mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
|
| 13 | mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
|
| 14 | fveq1 | |- ( c = d -> ( c ` a ) = ( d ` a ) ) |
|
| 15 | 14 | oveq1d | |- ( c = d -> ( ( c ` a ) F b ) = ( ( d ` a ) F b ) ) |
| 16 | 15 | mpoeq3dv | |- ( c = d -> ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) = ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) |
| 17 | 16 | fveq2d | |- ( c = d -> ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) |
| 18 | fveq2 | |- ( c = d -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) ) |
|
| 19 | 18 | oveq1d | |- ( c = d -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) |
| 20 | 17 19 | eqeq12d | |- ( c = d -> ( ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) <-> ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) ) |
| 21 | fveq1 | |- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( c ` a ) = ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) ) |
|
| 22 | 21 | oveq1d | |- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( ( c ` a ) F b ) = ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) |
| 23 | 22 | mpoeq3dv | |- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) = ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) |
| 24 | 23 | fveq2d | |- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) ) |
| 25 | fveq2 | |- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) ) |
|
| 26 | 25 | oveq1d | |- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) |
| 27 | 24 26 | eqeq12d | |- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) <-> ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) ) |
| 28 | fveq1 | |- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( c ` a ) = ( ( 0g ` ( SymGrp ` N ) ) ` a ) ) |
|
| 29 | 28 | oveq1d | |- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( ( c ` a ) F b ) = ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) |
| 30 | 29 | mpoeq3dv | |- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) = ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) ) |
| 31 | 30 | fveq2d | |- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) ) ) |
| 32 | fveq2 | |- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) ) |
|
| 33 | 32 | oveq1d | |- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) .x. ( D ` F ) ) ) |
| 34 | 31 33 | eqeq12d | |- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) <-> ( D ` ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) .x. ( D ` F ) ) ) ) |
| 35 | fveq1 | |- ( c = E -> ( c ` a ) = ( E ` a ) ) |
|
| 36 | 35 | oveq1d | |- ( c = E -> ( ( c ` a ) F b ) = ( ( E ` a ) F b ) ) |
| 37 | 36 | mpoeq3dv | |- ( c = E -> ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) = ( a e. N , b e. N |-> ( ( E ` a ) F b ) ) ) |
| 38 | 37 | fveq2d | |- ( c = E -> ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> ( ( E ` a ) F b ) ) ) ) |
| 39 | fveq2 | |- ( c = E -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) ) |
|
| 40 | 39 | oveq1d | |- ( c = E -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` F ) ) ) |
| 41 | 38 40 | eqeq12d | |- ( c = E -> ( ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) <-> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` F ) ) ) ) |
| 42 | eqid | |- ( 0g ` ( SymGrp ` N ) ) = ( 0g ` ( SymGrp ` N ) ) |
|
| 43 | eqid | |- ( +g ` ( SymGrp ` N ) ) = ( +g ` ( SymGrp ` N ) ) |
|
| 44 | eqid | |- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
|
| 45 | 8 | 3ad2ant1 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> N e. Fin ) |
| 46 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 47 | 46 | symggrp | |- ( N e. Fin -> ( SymGrp ` N ) e. Grp ) |
| 48 | grpmnd | |- ( ( SymGrp ` N ) e. Grp -> ( SymGrp ` N ) e. Mnd ) |
|
| 49 | 45 47 48 | 3syl | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( SymGrp ` N ) e. Mnd ) |
| 50 | eqid | |- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
|
| 51 | 50 46 44 | symgtrf | |- ran ( pmTrsp ` N ) C_ ( Base ` ( SymGrp ` N ) ) |
| 52 | 51 | a1i | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ran ( pmTrsp ` N ) C_ ( Base ` ( SymGrp ` N ) ) ) |
| 53 | eqid | |- ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) = ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) |
|
| 54 | 50 46 44 53 | symggen2 | |- ( N e. Fin -> ( ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) ` ran ( pmTrsp ` N ) ) = ( Base ` ( SymGrp ` N ) ) ) |
| 55 | 8 54 | syl | |- ( ph -> ( ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) ` ran ( pmTrsp ` N ) ) = ( Base ` ( SymGrp ` N ) ) ) |
| 56 | 55 | eqcomd | |- ( ph -> ( Base ` ( SymGrp ` N ) ) = ( ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) ` ran ( pmTrsp ` N ) ) ) |
| 57 | 56 | 3ad2ant1 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( Base ` ( SymGrp ` N ) ) = ( ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) ` ran ( pmTrsp ` N ) ) ) |
| 58 | 9 | 3ad2ant1 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> R e. Ring ) |
| 59 | 10 | 3ad2ant1 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> D : B --> K ) |
| 60 | simp3 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> F e. B ) |
|
| 61 | 59 60 | ffvelcdmd | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( D ` F ) e. K ) |
| 62 | 3 7 5 | ringlidm | |- ( ( R e. Ring /\ ( D ` F ) e. K ) -> ( .1. .x. ( D ` F ) ) = ( D ` F ) ) |
| 63 | 58 61 62 | syl2anc | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( .1. .x. ( D ` F ) ) = ( D ` F ) ) |
| 64 | zrhpsgnmhm | |- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
|
| 65 | 9 8 64 | syl2anc | |- ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 66 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 67 | 66 5 | ringidval | |- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 68 | 42 67 | mhm0 | |- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) = .1. ) |
| 69 | 65 68 | syl | |- ( ph -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) = .1. ) |
| 70 | 69 | 3ad2ant1 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) = .1. ) |
| 71 | 70 | oveq1d | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) .x. ( D ` F ) ) = ( .1. .x. ( D ` F ) ) ) |
| 72 | 46 | symgid | |- ( N e. Fin -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
| 73 | 8 72 | syl | |- ( ph -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
| 74 | 73 | 3ad2ant1 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
| 75 | 74 | 3ad2ant1 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
| 76 | 75 | fveq1d | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> ( ( _I |` N ) ` a ) = ( ( 0g ` ( SymGrp ` N ) ) ` a ) ) |
| 77 | simp2 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> a e. N ) |
|
| 78 | fvresi | |- ( a e. N -> ( ( _I |` N ) ` a ) = a ) |
|
| 79 | 77 78 | syl | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> ( ( _I |` N ) ` a ) = a ) |
| 80 | 76 79 | eqtr3d | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> ( ( 0g ` ( SymGrp ` N ) ) ` a ) = a ) |
| 81 | 80 | oveq1d | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) = ( a F b ) ) |
| 82 | 81 | mpoeq3dva | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) = ( a e. N , b e. N |-> ( a F b ) ) ) |
| 83 | 1 3 2 | matbas2i | |- ( F e. B -> F e. ( K ^m ( N X. N ) ) ) |
| 84 | 83 | 3ad2ant3 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> F e. ( K ^m ( N X. N ) ) ) |
| 85 | elmapi | |- ( F e. ( K ^m ( N X. N ) ) -> F : ( N X. N ) --> K ) |
|
| 86 | ffn | |- ( F : ( N X. N ) --> K -> F Fn ( N X. N ) ) |
|
| 87 | 84 85 86 | 3syl | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> F Fn ( N X. N ) ) |
| 88 | fnov | |- ( F Fn ( N X. N ) <-> F = ( a e. N , b e. N |-> ( a F b ) ) ) |
|
| 89 | 87 88 | sylib | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> F = ( a e. N , b e. N |-> ( a F b ) ) ) |
| 90 | 82 89 | eqtr4d | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) = F ) |
| 91 | 90 | fveq2d | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( D ` ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) ) = ( D ` F ) ) |
| 92 | 63 71 91 | 3eqtr4rd | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( D ` ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) .x. ( D ` F ) ) ) |
| 93 | simp2 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> d e. ( Base ` ( SymGrp ` N ) ) ) |
|
| 94 | 51 | sseli | |- ( e e. ran ( pmTrsp ` N ) -> e e. ( Base ` ( SymGrp ` N ) ) ) |
| 95 | 94 | 3ad2ant3 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> e e. ( Base ` ( SymGrp ` N ) ) ) |
| 96 | 46 44 43 | symgov | |- ( ( d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ( Base ` ( SymGrp ` N ) ) ) -> ( d ( +g ` ( SymGrp ` N ) ) e ) = ( d o. e ) ) |
| 97 | 93 95 96 | syl2anc | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( d ( +g ` ( SymGrp ` N ) ) e ) = ( d o. e ) ) |
| 98 | 97 | fveq1d | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) = ( ( d o. e ) ` a ) ) |
| 99 | 98 | 3ad2ant1 | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) = ( ( d o. e ) ` a ) ) |
| 100 | 46 44 | symgbasf1o | |- ( e e. ( Base ` ( SymGrp ` N ) ) -> e : N -1-1-onto-> N ) |
| 101 | f1of | |- ( e : N -1-1-onto-> N -> e : N --> N ) |
|
| 102 | 95 100 101 | 3syl | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> e : N --> N ) |
| 103 | 102 | 3ad2ant1 | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> e : N --> N ) |
| 104 | simp2 | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> a e. N ) |
|
| 105 | fvco3 | |- ( ( e : N --> N /\ a e. N ) -> ( ( d o. e ) ` a ) = ( d ` ( e ` a ) ) ) |
|
| 106 | 103 104 105 | syl2anc | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> ( ( d o. e ) ` a ) = ( d ` ( e ` a ) ) ) |
| 107 | 99 106 | eqtrd | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) = ( d ` ( e ` a ) ) ) |
| 108 | 107 | oveq1d | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) = ( ( d ` ( e ` a ) ) F b ) ) |
| 109 | 108 | mpoeq3dva | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) = ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) |
| 110 | 109 | fveq2d | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) ) |
| 111 | 46 44 | symgbasf | |- ( d e. ( Base ` ( SymGrp ` N ) ) -> d : N --> N ) |
| 112 | eqid | |- ( pmTrsp ` N ) = ( pmTrsp ` N ) |
|
| 113 | 112 50 | pmtrrn2 | |- ( e e. ran ( pmTrsp ` N ) -> E. c e. N E. f e. N ( c =/= f /\ e = ( ( pmTrsp ` N ) ` { c , f } ) ) ) |
| 114 | simpll1 | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ph ) |
|
| 115 | df-3an | |- ( ( c e. N /\ f e. N /\ c =/= f ) <-> ( ( c e. N /\ f e. N ) /\ c =/= f ) ) |
|
| 116 | 115 | biimpri | |- ( ( ( c e. N /\ f e. N ) /\ c =/= f ) -> ( c e. N /\ f e. N /\ c =/= f ) ) |
| 117 | 116 | adantl | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( c e. N /\ f e. N /\ c =/= f ) ) |
| 118 | 84 85 | syl | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> F : ( N X. N ) --> K ) |
| 119 | 118 | adantr | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) -> F : ( N X. N ) --> K ) |
| 120 | 119 | ad2antrr | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> F : ( N X. N ) --> K ) |
| 121 | simpllr | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> d : N --> N ) |
|
| 122 | simprlr | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> f e. N ) |
|
| 123 | 122 | adantr | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> f e. N ) |
| 124 | 121 123 | ffvelcdmd | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> ( d ` f ) e. N ) |
| 125 | simpr | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> b e. N ) |
|
| 126 | 120 124 125 | fovcdmd | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> ( ( d ` f ) F b ) e. K ) |
| 127 | simprll | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> c e. N ) |
|
| 128 | 127 | adantr | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> c e. N ) |
| 129 | 121 128 | ffvelcdmd | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> ( d ` c ) e. N ) |
| 130 | 120 129 125 | fovcdmd | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> ( ( d ` c ) F b ) e. K ) |
| 131 | 126 130 | jca | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> ( ( ( d ` f ) F b ) e. K /\ ( ( d ` c ) F b ) e. K ) ) |
| 132 | 118 | ad2antrr | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> F : ( N X. N ) --> K ) |
| 133 | 132 | 3ad2ant1 | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> F : ( N X. N ) --> K ) |
| 134 | simp1lr | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> d : N --> N ) |
|
| 135 | simp2 | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> a e. N ) |
|
| 136 | 134 135 | ffvelcdmd | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> ( d ` a ) e. N ) |
| 137 | simp3 | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> b e. N ) |
|
| 138 | 133 136 137 | fovcdmd | |- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> ( ( d ` a ) F b ) e. K ) |
| 139 | 1 2 3 4 5 6 7 8 9 10 11 12 13 114 117 131 138 | mdetunilem6 | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) ) ) ) |
| 140 | simpl1 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) -> ph ) |
|
| 141 | fveq2 | |- ( a = c -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = ( ( ( pmTrsp ` N ) ` { c , f } ) ` c ) ) |
|
| 142 | 8 | adantr | |- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> N e. Fin ) |
| 143 | simprll | |- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> c e. N ) |
|
| 144 | simprlr | |- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> f e. N ) |
|
| 145 | simprr | |- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> c =/= f ) |
|
| 146 | 112 | pmtrprfv | |- ( ( N e. Fin /\ ( c e. N /\ f e. N /\ c =/= f ) ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` c ) = f ) |
| 147 | 142 143 144 145 146 | syl13anc | |- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` c ) = f ) |
| 148 | 147 | adantr | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` c ) = f ) |
| 149 | 141 148 | sylan9eqr | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = c ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = f ) |
| 150 | 149 | fveq2d | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = c ) -> ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) = ( d ` f ) ) |
| 151 | 150 | oveq1d | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = c ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = ( ( d ` f ) F b ) ) |
| 152 | iftrue | |- ( a = c -> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) = ( ( d ` f ) F b ) ) |
|
| 153 | 152 | adantl | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = c ) -> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) = ( ( d ` f ) F b ) ) |
| 154 | 151 153 | eqtr4d | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = c ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) |
| 155 | fveq2 | |- ( a = f -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = ( ( ( pmTrsp ` N ) ` { c , f } ) ` f ) ) |
|
| 156 | prcom | |- { c , f } = { f , c } |
|
| 157 | 156 | fveq2i | |- ( ( pmTrsp ` N ) ` { c , f } ) = ( ( pmTrsp ` N ) ` { f , c } ) |
| 158 | 157 | fveq1i | |- ( ( ( pmTrsp ` N ) ` { c , f } ) ` f ) = ( ( ( pmTrsp ` N ) ` { f , c } ) ` f ) |
| 159 | 8 | ad2antrr | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> N e. Fin ) |
| 160 | simplrl | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( c e. N /\ f e. N ) ) |
|
| 161 | 160 | simprd | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> f e. N ) |
| 162 | 160 | simpld | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> c e. N ) |
| 163 | simplrr | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> c =/= f ) |
|
| 164 | 163 | necomd | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> f =/= c ) |
| 165 | 112 | pmtrprfv | |- ( ( N e. Fin /\ ( f e. N /\ c e. N /\ f =/= c ) ) -> ( ( ( pmTrsp ` N ) ` { f , c } ) ` f ) = c ) |
| 166 | 159 161 162 164 165 | syl13anc | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( ( pmTrsp ` N ) ` { f , c } ) ` f ) = c ) |
| 167 | 158 166 | eqtrid | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` f ) = c ) |
| 168 | 155 167 | sylan9eqr | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = f ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = c ) |
| 169 | 168 | fveq2d | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = f ) -> ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) = ( d ` c ) ) |
| 170 | 169 | oveq1d | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = f ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = ( ( d ` c ) F b ) ) |
| 171 | iftrue | |- ( a = f -> if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` c ) F b ) ) |
|
| 172 | 171 | adantl | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = f ) -> if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` c ) F b ) ) |
| 173 | 170 172 | eqtr4d | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = f ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
| 174 | 173 | adantlr | |- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ a = f ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
| 175 | vex | |- a e. _V |
|
| 176 | 175 | elpr | |- ( a e. { c , f } <-> ( a = c \/ a = f ) ) |
| 177 | 176 | notbii | |- ( -. a e. { c , f } <-> -. ( a = c \/ a = f ) ) |
| 178 | ioran | |- ( -. ( a = c \/ a = f ) <-> ( -. a = c /\ -. a = f ) ) |
|
| 179 | 177 178 | sylbbr | |- ( ( -. a = c /\ -. a = f ) -> -. a e. { c , f } ) |
| 180 | 179 | adantll | |- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> -. a e. { c , f } ) |
| 181 | prssi | |- ( ( c e. N /\ f e. N ) -> { c , f } C_ N ) |
|
| 182 | 160 181 | syl | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> { c , f } C_ N ) |
| 183 | pr2ne | |- ( ( c e. N /\ f e. N ) -> ( { c , f } ~~ 2o <-> c =/= f ) ) |
|
| 184 | 160 183 | syl | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( { c , f } ~~ 2o <-> c =/= f ) ) |
| 185 | 163 184 | mpbird | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> { c , f } ~~ 2o ) |
| 186 | 112 | pmtrmvd | |- ( ( N e. Fin /\ { c , f } C_ N /\ { c , f } ~~ 2o ) -> dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) = { c , f } ) |
| 187 | 159 182 185 186 | syl3anc | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) = { c , f } ) |
| 188 | 187 | eleq2d | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) <-> a e. { c , f } ) ) |
| 189 | 188 | notbid | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) <-> -. a e. { c , f } ) ) |
| 190 | 189 | ad2antrr | |- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) <-> -. a e. { c , f } ) ) |
| 191 | 180 190 | mpbird | |- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) ) |
| 192 | 112 | pmtrf | |- ( ( N e. Fin /\ { c , f } C_ N /\ { c , f } ~~ 2o ) -> ( ( pmTrsp ` N ) ` { c , f } ) : N --> N ) |
| 193 | 159 182 185 192 | syl3anc | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( pmTrsp ` N ) ` { c , f } ) : N --> N ) |
| 194 | 193 | ffnd | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( pmTrsp ` N ) ` { c , f } ) Fn N ) |
| 195 | simpr | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> a e. N ) |
|
| 196 | fnelnfp | |- ( ( ( ( pmTrsp ` N ) ` { c , f } ) Fn N /\ a e. N ) -> ( a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) =/= a ) ) |
|
| 197 | 196 | necon2bbid | |- ( ( ( ( pmTrsp ` N ) ` { c , f } ) Fn N /\ a e. N ) -> ( ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = a <-> -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) ) ) |
| 198 | 194 195 197 | syl2anc | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = a <-> -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) ) ) |
| 199 | 198 | ad2antrr | |- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = a <-> -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) ) ) |
| 200 | 191 199 | mpbird | |- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = a ) |
| 201 | 200 | fveq2d | |- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) = ( d ` a ) ) |
| 202 | 201 | oveq1d | |- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = ( ( d ` a ) F b ) ) |
| 203 | iffalse | |- ( -. a = f -> if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` a ) F b ) ) |
|
| 204 | 203 | adantl | |- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` a ) F b ) ) |
| 205 | 202 204 | eqtr4d | |- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
| 206 | 174 205 | pm2.61dan | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
| 207 | iffalse | |- ( -. a = c -> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
|
| 208 | 207 | adantl | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) -> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
| 209 | 206 208 | eqtr4d | |- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) |
| 210 | 154 209 | pm2.61dan | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) |
| 211 | 210 | 3adant3 | |- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) |
| 212 | 211 | mpoeq3dva | |- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) = ( a e. N , b e. N |-> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) ) |
| 213 | 140 212 | sylan | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) = ( a e. N , b e. N |-> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) ) |
| 214 | 213 | fveq2d | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) ) ) |
| 215 | fveq2 | |- ( a = c -> ( d ` a ) = ( d ` c ) ) |
|
| 216 | 215 | oveq1d | |- ( a = c -> ( ( d ` a ) F b ) = ( ( d ` c ) F b ) ) |
| 217 | iftrue | |- ( a = c -> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) = ( ( d ` c ) F b ) ) |
|
| 218 | 216 217 | eqtr4d | |- ( a = c -> ( ( d ` a ) F b ) = if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) |
| 219 | fveq2 | |- ( a = f -> ( d ` a ) = ( d ` f ) ) |
|
| 220 | 219 | oveq1d | |- ( a = f -> ( ( d ` a ) F b ) = ( ( d ` f ) F b ) ) |
| 221 | iftrue | |- ( a = f -> if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` f ) F b ) ) |
|
| 222 | 220 221 | eqtr4d | |- ( a = f -> ( ( d ` a ) F b ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
| 223 | 222 | adantl | |- ( ( -. a = c /\ a = f ) -> ( ( d ` a ) F b ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
| 224 | iffalse | |- ( -. a = f -> if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` a ) F b ) ) |
|
| 225 | 224 | eqcomd | |- ( -. a = f -> ( ( d ` a ) F b ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
| 226 | 225 | adantl | |- ( ( -. a = c /\ -. a = f ) -> ( ( d ` a ) F b ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
| 227 | 223 226 | pm2.61dan | |- ( -. a = c -> ( ( d ` a ) F b ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
| 228 | iffalse | |- ( -. a = c -> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
|
| 229 | 227 228 | eqtr4d | |- ( -. a = c -> ( ( d ` a ) F b ) = if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) |
| 230 | 218 229 | pm2.61i | |- ( ( d ` a ) F b ) = if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
| 231 | 230 | a1i | |- ( ( a e. N /\ b e. N ) -> ( ( d ` a ) F b ) = if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) |
| 232 | 231 | mpoeq3ia | |- ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) = ( a e. N , b e. N |-> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) |
| 233 | 232 | fveq2i | |- ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) ) |
| 234 | 233 | fveq2i | |- ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) ) ) |
| 235 | 234 | a1i | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) ) ) ) |
| 236 | 139 214 235 | 3eqtr4d | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) |
| 237 | fveq1 | |- ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( e ` a ) = ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) |
|
| 238 | 237 | fveq2d | |- ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( d ` ( e ` a ) ) = ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) ) |
| 239 | 238 | oveq1d | |- ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( ( d ` ( e ` a ) ) F b ) = ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) |
| 240 | 239 | mpoeq3dv | |- ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) = ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) ) |
| 241 | 240 | fveqeq2d | |- ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) <-> ( D ` ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) |
| 242 | 236 241 | syl5ibrcom | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) |
| 243 | 242 | expr | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( c e. N /\ f e. N ) ) -> ( c =/= f -> ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) ) |
| 244 | 243 | impd | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( c e. N /\ f e. N ) ) -> ( ( c =/= f /\ e = ( ( pmTrsp ` N ) ` { c , f } ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) |
| 245 | 244 | rexlimdvva | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) -> ( E. c e. N E. f e. N ( c =/= f /\ e = ( ( pmTrsp ` N ) ` { c , f } ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) |
| 246 | 113 245 | syl5 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) -> ( e e. ran ( pmTrsp ` N ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) |
| 247 | 246 | 3impia | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N /\ e e. ran ( pmTrsp ` N ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) |
| 248 | 111 247 | syl3an2 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) |
| 249 | 110 248 | eqtrd | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) |
| 250 | 249 | adantr | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) -> ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) |
| 251 | fveq2 | |- ( ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) -> ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) = ( ( invg ` R ) ` ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) ) |
|
| 252 | 251 | adantl | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) -> ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) = ( ( invg ` R ) ` ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) ) |
| 253 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 254 | 58 | 3ad2ant1 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> R e. Ring ) |
| 255 | 65 | 3ad2ant1 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 256 | 255 | 3ad2ant1 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 257 | 66 3 | mgpbas | |- K = ( Base ` ( mulGrp ` R ) ) |
| 258 | 44 257 | mhmf | |- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 259 | 256 258 | syl | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 260 | 259 93 | ffvelcdmd | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) e. K ) |
| 261 | 59 | 3ad2ant1 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> D : B --> K ) |
| 262 | simp13 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> F e. B ) |
|
| 263 | 261 262 | ffvelcdmd | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( D ` F ) e. K ) |
| 264 | 3 7 253 254 260 263 | ringmneg1 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( invg ` R ) ` ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) ) .x. ( D ` F ) ) = ( ( invg ` R ) ` ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) ) |
| 265 | 66 7 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 266 | 44 43 265 | mhmlin | |- ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` e ) ) ) |
| 267 | 256 93 95 266 | syl3anc | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` e ) ) ) |
| 268 | 45 | 3ad2ant1 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> N e. Fin ) |
| 269 | simp3 | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> e e. ran ( pmTrsp ` N ) ) |
|
| 270 | 46 44 50 | pmtrodpm | |- ( ( N e. Fin /\ e e. ran ( pmTrsp ` N ) ) -> e e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
| 271 | 268 269 270 | syl2anc | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> e e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
| 272 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 273 | eqid | |- ( pmSgn ` N ) = ( pmSgn ` N ) |
|
| 274 | 272 273 5 44 253 | zrhpsgnodpm | |- ( ( R e. Ring /\ N e. Fin /\ e e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` e ) = ( ( invg ` R ) ` .1. ) ) |
| 275 | 254 268 271 274 | syl3anc | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` e ) = ( ( invg ` R ) ` .1. ) ) |
| 276 | 275 | oveq2d | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` e ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( ( invg ` R ) ` .1. ) ) ) |
| 277 | 3 7 5 253 254 260 | ringnegr | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( ( invg ` R ) ` .1. ) ) = ( ( invg ` R ) ` ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) ) ) |
| 278 | 267 276 277 | 3eqtrrd | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( invg ` R ) ` ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) ) |
| 279 | 278 | oveq1d | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( invg ` R ) ` ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) ) .x. ( D ` F ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) |
| 280 | 264 279 | eqtr3d | |- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( invg ` R ) ` ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) |
| 281 | 280 | adantr | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) -> ( ( invg ` R ) ` ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) |
| 282 | 250 252 281 | 3eqtrd | |- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) -> ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) |
| 283 | simp2 | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> E : N -1-1-onto-> N ) |
|
| 284 | 46 44 | elsymgbas | |- ( N e. Fin -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) |
| 285 | 45 284 | syl | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) |
| 286 | 283 285 | mpbird | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> E e. ( Base ` ( SymGrp ` N ) ) ) |
| 287 | 20 27 34 41 42 43 44 49 52 57 92 282 286 | mndind | |- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` F ) ) ) |