This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 28-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| symgbas.2 | |- B = ( Base ` G ) |
||
| Assertion | elsymgbas | |- ( A e. V -> ( F e. B <-> F : A -1-1-onto-> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgbas.2 | |- B = ( Base ` G ) |
|
| 3 | elex | |- ( F e. B -> F e. _V ) |
|
| 4 | 3 | a1i | |- ( A e. V -> ( F e. B -> F e. _V ) ) |
| 5 | f1of | |- ( F : A -1-1-onto-> A -> F : A --> A ) |
|
| 6 | fex | |- ( ( F : A --> A /\ A e. V ) -> F e. _V ) |
|
| 7 | 6 | expcom | |- ( A e. V -> ( F : A --> A -> F e. _V ) ) |
| 8 | 5 7 | syl5 | |- ( A e. V -> ( F : A -1-1-onto-> A -> F e. _V ) ) |
| 9 | 1 2 | elsymgbas2 | |- ( F e. _V -> ( F e. B <-> F : A -1-1-onto-> A ) ) |
| 10 | 9 | a1i | |- ( A e. V -> ( F e. _V -> ( F e. B <-> F : A -1-1-onto-> A ) ) ) |
| 11 | 4 8 10 | pm5.21ndd | |- ( A e. V -> ( F e. B <-> F : A -1-1-onto-> A ) ) |