This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in a ring is the same as right multiplication by -1. ( rngonegmn1r analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringnegl.b | |- B = ( Base ` R ) |
|
| ringnegl.t | |- .x. = ( .r ` R ) |
||
| ringnegl.u | |- .1. = ( 1r ` R ) |
||
| ringnegl.n | |- N = ( invg ` R ) |
||
| ringnegl.r | |- ( ph -> R e. Ring ) |
||
| ringnegl.x | |- ( ph -> X e. B ) |
||
| Assertion | ringnegr | |- ( ph -> ( X .x. ( N ` .1. ) ) = ( N ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegl.b | |- B = ( Base ` R ) |
|
| 2 | ringnegl.t | |- .x. = ( .r ` R ) |
|
| 3 | ringnegl.u | |- .1. = ( 1r ` R ) |
|
| 4 | ringnegl.n | |- N = ( invg ` R ) |
|
| 5 | ringnegl.r | |- ( ph -> R e. Ring ) |
|
| 6 | ringnegl.x | |- ( ph -> X e. B ) |
|
| 7 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 8 | 5 7 | syl | |- ( ph -> R e. Grp ) |
| 9 | 1 3 | ringidcl | |- ( R e. Ring -> .1. e. B ) |
| 10 | 5 9 | syl | |- ( ph -> .1. e. B ) |
| 11 | 1 4 | grpinvcl | |- ( ( R e. Grp /\ .1. e. B ) -> ( N ` .1. ) e. B ) |
| 12 | 8 10 11 | syl2anc | |- ( ph -> ( N ` .1. ) e. B ) |
| 13 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 14 | 1 13 2 | ringdi | |- ( ( R e. Ring /\ ( X e. B /\ ( N ` .1. ) e. B /\ .1. e. B ) ) -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( ( X .x. ( N ` .1. ) ) ( +g ` R ) ( X .x. .1. ) ) ) |
| 15 | 5 6 12 10 14 | syl13anc | |- ( ph -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( ( X .x. ( N ` .1. ) ) ( +g ` R ) ( X .x. .1. ) ) ) |
| 16 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 17 | 1 13 16 4 | grplinv | |- ( ( R e. Grp /\ .1. e. B ) -> ( ( N ` .1. ) ( +g ` R ) .1. ) = ( 0g ` R ) ) |
| 18 | 8 10 17 | syl2anc | |- ( ph -> ( ( N ` .1. ) ( +g ` R ) .1. ) = ( 0g ` R ) ) |
| 19 | 18 | oveq2d | |- ( ph -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( X .x. ( 0g ` R ) ) ) |
| 20 | 1 2 16 | ringrz | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 21 | 5 6 20 | syl2anc | |- ( ph -> ( X .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 22 | 19 21 | eqtrd | |- ( ph -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( 0g ` R ) ) |
| 23 | 1 2 3 | ringridm | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .1. ) = X ) |
| 24 | 5 6 23 | syl2anc | |- ( ph -> ( X .x. .1. ) = X ) |
| 25 | 24 | oveq2d | |- ( ph -> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) ( X .x. .1. ) ) = ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) ) |
| 26 | 15 22 25 | 3eqtr3rd | |- ( ph -> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) = ( 0g ` R ) ) |
| 27 | 1 2 | ringcl | |- ( ( R e. Ring /\ X e. B /\ ( N ` .1. ) e. B ) -> ( X .x. ( N ` .1. ) ) e. B ) |
| 28 | 5 6 12 27 | syl3anc | |- ( ph -> ( X .x. ( N ` .1. ) ) e. B ) |
| 29 | 1 13 16 4 | grpinvid2 | |- ( ( R e. Grp /\ X e. B /\ ( X .x. ( N ` .1. ) ) e. B ) -> ( ( N ` X ) = ( X .x. ( N ` .1. ) ) <-> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) = ( 0g ` R ) ) ) |
| 30 | 8 6 28 29 | syl3anc | |- ( ph -> ( ( N ` X ) = ( X .x. ( N ` .1. ) ) <-> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) = ( 0g ` R ) ) ) |
| 31 | 26 30 | mpbird | |- ( ph -> ( N ` X ) = ( X .x. ( N ` .1. ) ) ) |
| 32 | 31 | eqcomd | |- ( ph -> ( X .x. ( N ` .1. ) ) = ( N ` X ) ) |