This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | |- A = ( N Mat R ) |
|
| mdetuni.b | |- B = ( Base ` A ) |
||
| mdetuni.k | |- K = ( Base ` R ) |
||
| mdetuni.0g | |- .0. = ( 0g ` R ) |
||
| mdetuni.1r | |- .1. = ( 1r ` R ) |
||
| mdetuni.pg | |- .+ = ( +g ` R ) |
||
| mdetuni.tg | |- .x. = ( .r ` R ) |
||
| mdetuni.n | |- ( ph -> N e. Fin ) |
||
| mdetuni.r | |- ( ph -> R e. Ring ) |
||
| mdetuni.ff | |- ( ph -> D : B --> K ) |
||
| mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
||
| mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
||
| mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
||
| mdetunilem8.id | |- ( ph -> ( D ` ( 1r ` A ) ) = .0. ) |
||
| Assertion | mdetunilem8 | |- ( ( ph /\ E : N --> N ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | |- A = ( N Mat R ) |
|
| 2 | mdetuni.b | |- B = ( Base ` A ) |
|
| 3 | mdetuni.k | |- K = ( Base ` R ) |
|
| 4 | mdetuni.0g | |- .0. = ( 0g ` R ) |
|
| 5 | mdetuni.1r | |- .1. = ( 1r ` R ) |
|
| 6 | mdetuni.pg | |- .+ = ( +g ` R ) |
|
| 7 | mdetuni.tg | |- .x. = ( .r ` R ) |
|
| 8 | mdetuni.n | |- ( ph -> N e. Fin ) |
|
| 9 | mdetuni.r | |- ( ph -> R e. Ring ) |
|
| 10 | mdetuni.ff | |- ( ph -> D : B --> K ) |
|
| 11 | mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
|
| 12 | mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
|
| 13 | mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
|
| 14 | mdetunilem8.id | |- ( ph -> ( D ` ( 1r ` A ) ) = .0. ) |
|
| 15 | simpl | |- ( ( ph /\ E : N -1-1-> N ) -> ph ) |
|
| 16 | enrefg | |- ( N e. Fin -> N ~~ N ) |
|
| 17 | 8 16 | syl | |- ( ph -> N ~~ N ) |
| 18 | f1finf1o | |- ( ( N ~~ N /\ N e. Fin ) -> ( E : N -1-1-> N <-> E : N -1-1-onto-> N ) ) |
|
| 19 | 17 8 18 | syl2anc | |- ( ph -> ( E : N -1-1-> N <-> E : N -1-1-onto-> N ) ) |
| 20 | 19 | biimpa | |- ( ( ph /\ E : N -1-1-> N ) -> E : N -1-1-onto-> N ) |
| 21 | 1 | matring | |- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 22 | 8 9 21 | syl2anc | |- ( ph -> A e. Ring ) |
| 23 | eqid | |- ( 1r ` A ) = ( 1r ` A ) |
|
| 24 | 2 23 | ringidcl | |- ( A e. Ring -> ( 1r ` A ) e. B ) |
| 25 | 22 24 | syl | |- ( ph -> ( 1r ` A ) e. B ) |
| 26 | 25 | adantr | |- ( ( ph /\ E : N -1-1-> N ) -> ( 1r ` A ) e. B ) |
| 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | mdetunilem7 | |- ( ( ph /\ E : N -1-1-onto-> N /\ ( 1r ` A ) e. B ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) ) |
| 28 | 15 20 26 27 | syl3anc | |- ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) ) |
| 29 | 8 | adantr | |- ( ( ph /\ E : N -1-1-> N ) -> N e. Fin ) |
| 30 | 29 | 3ad2ant1 | |- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> N e. Fin ) |
| 31 | 9 | adantr | |- ( ( ph /\ E : N -1-1-> N ) -> R e. Ring ) |
| 32 | 31 | 3ad2ant1 | |- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> R e. Ring ) |
| 33 | simp1r | |- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> E : N -1-1-> N ) |
|
| 34 | f1f | |- ( E : N -1-1-> N -> E : N --> N ) |
|
| 35 | 33 34 | syl | |- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> E : N --> N ) |
| 36 | simp2 | |- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> a e. N ) |
|
| 37 | 35 36 | ffvelcdmd | |- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> ( E ` a ) e. N ) |
| 38 | simp3 | |- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> b e. N ) |
|
| 39 | 1 5 4 30 32 37 38 23 | mat1ov | |- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> ( ( E ` a ) ( 1r ` A ) b ) = if ( ( E ` a ) = b , .1. , .0. ) ) |
| 40 | 39 | mpoeq3dva | |- ( ( ph /\ E : N -1-1-> N ) -> ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) = ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 41 | 40 | fveq2d | |- ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) ) = ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) ) |
| 42 | 14 | adantr | |- ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( 1r ` A ) ) = .0. ) |
| 43 | 42 | oveq2d | |- ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. .0. ) ) |
| 44 | zrhpsgnmhm | |- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
|
| 45 | 9 8 44 | syl2anc | |- ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 46 | eqid | |- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
|
| 47 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 48 | 47 3 | mgpbas | |- K = ( Base ` ( mulGrp ` R ) ) |
| 49 | 46 48 | mhmf | |- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 50 | 45 49 | syl | |- ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 51 | 50 | adantr | |- ( ( ph /\ E : N -1-1-> N ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 52 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 53 | 52 46 | elsymgbas | |- ( N e. Fin -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) |
| 54 | 29 53 | syl | |- ( ( ph /\ E : N -1-1-> N ) -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) |
| 55 | 20 54 | mpbird | |- ( ( ph /\ E : N -1-1-> N ) -> E e. ( Base ` ( SymGrp ` N ) ) ) |
| 56 | 51 55 | ffvelcdmd | |- ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) e. K ) |
| 57 | 3 7 4 | ringrz | |- ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) e. K ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. .0. ) = .0. ) |
| 58 | 31 56 57 | syl2anc | |- ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. .0. ) = .0. ) |
| 59 | 43 58 | eqtrd | |- ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) = .0. ) |
| 60 | 28 41 59 | 3eqtr3d | |- ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) |
| 61 | 60 | ex | |- ( ph -> ( E : N -1-1-> N -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) |
| 62 | 61 | adantr | |- ( ( ph /\ E : N --> N ) -> ( E : N -1-1-> N -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) |
| 63 | dff13 | |- ( E : N -1-1-> N <-> ( E : N --> N /\ A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) |
|
| 64 | ibar | |- ( E : N --> N -> ( A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> ( E : N --> N /\ A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) ) |
|
| 65 | 64 | adantl | |- ( ( ph /\ E : N --> N ) -> ( A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> ( E : N --> N /\ A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) ) |
| 66 | 63 65 | bitr4id | |- ( ( ph /\ E : N --> N ) -> ( E : N -1-1-> N <-> A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) |
| 67 | 66 | notbid | |- ( ( ph /\ E : N --> N ) -> ( -. E : N -1-1-> N <-> -. A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) |
| 68 | rexnal | |- ( E. c e. N -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> -. A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) |
|
| 69 | rexnal | |- ( E. d e. N -. ( ( E ` c ) = ( E ` d ) -> c = d ) <-> -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) |
|
| 70 | df-ne | |- ( c =/= d <-> -. c = d ) |
|
| 71 | 70 | anbi2i | |- ( ( ( E ` c ) = ( E ` d ) /\ c =/= d ) <-> ( ( E ` c ) = ( E ` d ) /\ -. c = d ) ) |
| 72 | annim | |- ( ( ( E ` c ) = ( E ` d ) /\ -. c = d ) <-> -. ( ( E ` c ) = ( E ` d ) -> c = d ) ) |
|
| 73 | 71 72 | bitr2i | |- ( -. ( ( E ` c ) = ( E ` d ) -> c = d ) <-> ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) |
| 74 | 73 | rexbii | |- ( E. d e. N -. ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) |
| 75 | 69 74 | bitr3i | |- ( -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) |
| 76 | 75 | rexbii | |- ( E. c e. N -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) |
| 77 | 68 76 | bitr3i | |- ( -. A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) |
| 78 | 67 77 | bitrdi | |- ( ( ph /\ E : N --> N ) -> ( -. E : N -1-1-> N <-> E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) |
| 79 | simprrl | |- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( E ` c ) = ( E ` d ) ) |
|
| 80 | fveqeq2 | |- ( a = c -> ( ( E ` a ) = b <-> ( E ` c ) = b ) ) |
|
| 81 | 80 | ifbid | |- ( a = c -> if ( ( E ` a ) = b , .1. , .0. ) = if ( ( E ` c ) = b , .1. , .0. ) ) |
| 82 | iftrue | |- ( a = c -> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) = if ( ( E ` c ) = b , .1. , .0. ) ) |
|
| 83 | 81 82 | eqtr4d | |- ( a = c -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) |
| 84 | fveqeq2 | |- ( a = d -> ( ( E ` a ) = b <-> ( E ` d ) = b ) ) |
|
| 85 | 84 | ifbid | |- ( a = d -> if ( ( E ` a ) = b , .1. , .0. ) = if ( ( E ` d ) = b , .1. , .0. ) ) |
| 86 | iftrue | |- ( a = d -> if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) = if ( ( E ` d ) = b , .1. , .0. ) ) |
|
| 87 | 85 86 | eqtr4d | |- ( a = d -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 88 | iffalse | |- ( -. a = d -> if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) = if ( ( E ` a ) = b , .1. , .0. ) ) |
|
| 89 | 88 | eqcomd | |- ( -. a = d -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 90 | 87 89 | pm2.61i | |- if ( ( E ` a ) = b , .1. , .0. ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) |
| 91 | iffalse | |- ( -. a = c -> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) |
|
| 92 | 90 91 | eqtr4id | |- ( -. a = c -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) |
| 93 | 83 92 | pm2.61i | |- if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 94 | eqeq1 | |- ( ( E ` d ) = ( E ` c ) -> ( ( E ` d ) = b <-> ( E ` c ) = b ) ) |
|
| 95 | 94 | eqcoms | |- ( ( E ` c ) = ( E ` d ) -> ( ( E ` d ) = b <-> ( E ` c ) = b ) ) |
| 96 | 95 | ifbid | |- ( ( E ` c ) = ( E ` d ) -> if ( ( E ` d ) = b , .1. , .0. ) = if ( ( E ` c ) = b , .1. , .0. ) ) |
| 97 | 96 | ifeq1d | |- ( ( E ` c ) = ( E ` d ) -> if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) = if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 98 | 97 | ifeq2d | |- ( ( E ` c ) = ( E ` d ) -> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) |
| 99 | 93 98 | eqtrid | |- ( ( E ` c ) = ( E ` d ) -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) |
| 100 | 99 | mpoeq3dv | |- ( ( E ` c ) = ( E ` d ) -> ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) = ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) |
| 101 | 100 | fveq2d | |- ( ( E ` c ) = ( E ` d ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = ( D ` ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) ) |
| 102 | 79 101 | syl | |- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = ( D ` ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) ) |
| 103 | simpll | |- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ph ) |
|
| 104 | simprll | |- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> c e. N ) |
|
| 105 | simprlr | |- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> d e. N ) |
|
| 106 | simprrr | |- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> c =/= d ) |
|
| 107 | 104 105 106 | 3jca | |- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( c e. N /\ d e. N /\ c =/= d ) ) |
| 108 | 3 5 | ringidcl | |- ( R e. Ring -> .1. e. K ) |
| 109 | 9 108 | syl | |- ( ph -> .1. e. K ) |
| 110 | 3 4 | ring0cl | |- ( R e. Ring -> .0. e. K ) |
| 111 | 9 110 | syl | |- ( ph -> .0. e. K ) |
| 112 | 109 111 | ifcld | |- ( ph -> if ( ( E ` c ) = b , .1. , .0. ) e. K ) |
| 113 | 112 | ad3antrrr | |- ( ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) /\ b e. N ) -> if ( ( E ` c ) = b , .1. , .0. ) e. K ) |
| 114 | simp1ll | |- ( ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) /\ a e. N /\ b e. N ) -> ph ) |
|
| 115 | 109 111 | ifcld | |- ( ph -> if ( ( E ` a ) = b , .1. , .0. ) e. K ) |
| 116 | 114 115 | syl | |- ( ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) /\ a e. N /\ b e. N ) -> if ( ( E ` a ) = b , .1. , .0. ) e. K ) |
| 117 | 1 2 3 4 5 6 7 8 9 10 11 12 13 103 107 113 116 | mdetunilem2 | |- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( D ` ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) = .0. ) |
| 118 | 102 117 | eqtrd | |- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) |
| 119 | 118 | expr | |- ( ( ( ph /\ E : N --> N ) /\ ( c e. N /\ d e. N ) ) -> ( ( ( E ` c ) = ( E ` d ) /\ c =/= d ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) |
| 120 | 119 | rexlimdvva | |- ( ( ph /\ E : N --> N ) -> ( E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) |
| 121 | 78 120 | sylbid | |- ( ( ph /\ E : N --> N ) -> ( -. E : N -1-1-> N -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) |
| 122 | 62 121 | pm2.61d | |- ( ( ph /\ E : N --> N ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) |