This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any transposition there are two points it is transposing. (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| pmtrrn.r | |- R = ran T |
||
| Assertion | pmtrrn2 | |- ( F e. R -> E. x e. D E. y e. D ( x =/= y /\ F = ( T ` { x , y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| 2 | pmtrrn.r | |- R = ran T |
|
| 3 | eqid | |- dom ( F \ _I ) = dom ( F \ _I ) |
|
| 4 | 1 2 3 | pmtrfrn | |- ( F e. R -> ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) ) |
| 5 | 4 | simpld | |- ( F e. R -> ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) ) |
| 6 | 5 | simp3d | |- ( F e. R -> dom ( F \ _I ) ~~ 2o ) |
| 7 | en2 | |- ( dom ( F \ _I ) ~~ 2o -> E. x E. y dom ( F \ _I ) = { x , y } ) |
|
| 8 | 6 7 | syl | |- ( F e. R -> E. x E. y dom ( F \ _I ) = { x , y } ) |
| 9 | 5 | simp2d | |- ( F e. R -> dom ( F \ _I ) C_ D ) |
| 10 | 4 | simprd | |- ( F e. R -> F = ( T ` dom ( F \ _I ) ) ) |
| 11 | 9 6 10 | jca32 | |- ( F e. R -> ( dom ( F \ _I ) C_ D /\ ( dom ( F \ _I ) ~~ 2o /\ F = ( T ` dom ( F \ _I ) ) ) ) ) |
| 12 | sseq1 | |- ( dom ( F \ _I ) = { x , y } -> ( dom ( F \ _I ) C_ D <-> { x , y } C_ D ) ) |
|
| 13 | breq1 | |- ( dom ( F \ _I ) = { x , y } -> ( dom ( F \ _I ) ~~ 2o <-> { x , y } ~~ 2o ) ) |
|
| 14 | fveq2 | |- ( dom ( F \ _I ) = { x , y } -> ( T ` dom ( F \ _I ) ) = ( T ` { x , y } ) ) |
|
| 15 | 14 | eqeq2d | |- ( dom ( F \ _I ) = { x , y } -> ( F = ( T ` dom ( F \ _I ) ) <-> F = ( T ` { x , y } ) ) ) |
| 16 | 13 15 | anbi12d | |- ( dom ( F \ _I ) = { x , y } -> ( ( dom ( F \ _I ) ~~ 2o /\ F = ( T ` dom ( F \ _I ) ) ) <-> ( { x , y } ~~ 2o /\ F = ( T ` { x , y } ) ) ) ) |
| 17 | 12 16 | anbi12d | |- ( dom ( F \ _I ) = { x , y } -> ( ( dom ( F \ _I ) C_ D /\ ( dom ( F \ _I ) ~~ 2o /\ F = ( T ` dom ( F \ _I ) ) ) ) <-> ( { x , y } C_ D /\ ( { x , y } ~~ 2o /\ F = ( T ` { x , y } ) ) ) ) ) |
| 18 | 11 17 | syl5ibcom | |- ( F e. R -> ( dom ( F \ _I ) = { x , y } -> ( { x , y } C_ D /\ ( { x , y } ~~ 2o /\ F = ( T ` { x , y } ) ) ) ) ) |
| 19 | vex | |- x e. _V |
|
| 20 | vex | |- y e. _V |
|
| 21 | 19 20 | prss | |- ( ( x e. D /\ y e. D ) <-> { x , y } C_ D ) |
| 22 | 21 | bicomi | |- ( { x , y } C_ D <-> ( x e. D /\ y e. D ) ) |
| 23 | pr2ne | |- ( ( x e. _V /\ y e. _V ) -> ( { x , y } ~~ 2o <-> x =/= y ) ) |
|
| 24 | 23 | el2v | |- ( { x , y } ~~ 2o <-> x =/= y ) |
| 25 | 24 | anbi1i | |- ( ( { x , y } ~~ 2o /\ F = ( T ` { x , y } ) ) <-> ( x =/= y /\ F = ( T ` { x , y } ) ) ) |
| 26 | 22 25 | anbi12i | |- ( ( { x , y } C_ D /\ ( { x , y } ~~ 2o /\ F = ( T ` { x , y } ) ) ) <-> ( ( x e. D /\ y e. D ) /\ ( x =/= y /\ F = ( T ` { x , y } ) ) ) ) |
| 27 | 18 26 | imbitrdi | |- ( F e. R -> ( dom ( F \ _I ) = { x , y } -> ( ( x e. D /\ y e. D ) /\ ( x =/= y /\ F = ( T ` { x , y } ) ) ) ) ) |
| 28 | 27 | 2eximdv | |- ( F e. R -> ( E. x E. y dom ( F \ _I ) = { x , y } -> E. x E. y ( ( x e. D /\ y e. D ) /\ ( x =/= y /\ F = ( T ` { x , y } ) ) ) ) ) |
| 29 | 8 28 | mpd | |- ( F e. R -> E. x E. y ( ( x e. D /\ y e. D ) /\ ( x =/= y /\ F = ( T ` { x , y } ) ) ) ) |
| 30 | r2ex | |- ( E. x e. D E. y e. D ( x =/= y /\ F = ( T ` { x , y } ) ) <-> E. x E. y ( ( x e. D /\ y e. D ) /\ ( x =/= y /\ F = ( T ` { x , y } ) ) ) ) |
|
| 31 | 29 30 | sylibr | |- ( F e. R -> E. x e. D E. y e. D ( x =/= y /\ F = ( T ` { x , y } ) ) ) |