This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in Rotman p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgtrf.t | |- T = ran ( pmTrsp ` D ) |
|
| symgtrf.g | |- G = ( SymGrp ` D ) |
||
| symgtrf.b | |- B = ( Base ` G ) |
||
| symggen.k | |- K = ( mrCls ` ( SubMnd ` G ) ) |
||
| Assertion | symggen2 | |- ( D e. Fin -> ( K ` T ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgtrf.t | |- T = ran ( pmTrsp ` D ) |
|
| 2 | symgtrf.g | |- G = ( SymGrp ` D ) |
|
| 3 | symgtrf.b | |- B = ( Base ` G ) |
|
| 4 | symggen.k | |- K = ( mrCls ` ( SubMnd ` G ) ) |
|
| 5 | 1 2 3 4 | symggen | |- ( D e. Fin -> ( K ` T ) = { x e. B | dom ( x \ _I ) e. Fin } ) |
| 6 | difss | |- ( x \ _I ) C_ x |
|
| 7 | dmss | |- ( ( x \ _I ) C_ x -> dom ( x \ _I ) C_ dom x ) |
|
| 8 | 6 7 | ax-mp | |- dom ( x \ _I ) C_ dom x |
| 9 | 2 3 | symgbasf1o | |- ( x e. B -> x : D -1-1-onto-> D ) |
| 10 | f1odm | |- ( x : D -1-1-onto-> D -> dom x = D ) |
|
| 11 | 9 10 | syl | |- ( x e. B -> dom x = D ) |
| 12 | 8 11 | sseqtrid | |- ( x e. B -> dom ( x \ _I ) C_ D ) |
| 13 | ssfi | |- ( ( D e. Fin /\ dom ( x \ _I ) C_ D ) -> dom ( x \ _I ) e. Fin ) |
|
| 14 | 12 13 | sylan2 | |- ( ( D e. Fin /\ x e. B ) -> dom ( x \ _I ) e. Fin ) |
| 15 | 14 | ralrimiva | |- ( D e. Fin -> A. x e. B dom ( x \ _I ) e. Fin ) |
| 16 | rabid2 | |- ( B = { x e. B | dom ( x \ _I ) e. Fin } <-> A. x e. B dom ( x \ _I ) e. Fin ) |
|
| 17 | 15 16 | sylibr | |- ( D e. Fin -> B = { x e. B | dom ( x \ _I ) e. Fin } ) |
| 18 | 5 17 | eqtr4d | |- ( D e. Fin -> ( K ` T ) = B ) |