This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpoeq3dva.1 | |- ( ( ph /\ x e. A /\ y e. B ) -> C = D ) |
|
| Assertion | mpoeq3dva | |- ( ph -> ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3dva.1 | |- ( ( ph /\ x e. A /\ y e. B ) -> C = D ) |
|
| 2 | 1 | 3expb | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> C = D ) |
| 3 | 2 | eqeq2d | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( z = C <-> z = D ) ) |
| 4 | 3 | pm5.32da | |- ( ph -> ( ( ( x e. A /\ y e. B ) /\ z = C ) <-> ( ( x e. A /\ y e. B ) /\ z = D ) ) ) |
| 5 | 4 | oprabbidv | |- ( ph -> { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = D ) } ) |
| 6 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
|
| 7 | df-mpo | |- ( x e. A , y e. B |-> D ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = D ) } |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( ph -> ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> D ) ) |