This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an unordered pair has two elements, then they are different. (Contributed by FL, 14-Feb-2010) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 30-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pr2ne | |- ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o <-> A =/= B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnen2o | |- -. { A } ~~ 2o |
|
| 2 | dfsn2 | |- { A } = { A , A } |
|
| 3 | preq2 | |- ( A = B -> { A , A } = { A , B } ) |
|
| 4 | 2 3 | eqtr2id | |- ( A = B -> { A , B } = { A } ) |
| 5 | 4 | breq1d | |- ( A = B -> ( { A , B } ~~ 2o <-> { A } ~~ 2o ) ) |
| 6 | 1 5 | mtbiri | |- ( A = B -> -. { A , B } ~~ 2o ) |
| 7 | 6 | necon2ai | |- ( { A , B } ~~ 2o -> A =/= B ) |
| 8 | enpr2 | |- ( ( A e. C /\ B e. D /\ A =/= B ) -> { A , B } ~~ 2o ) |
|
| 9 | 8 | 3expia | |- ( ( A e. C /\ B e. D ) -> ( A =/= B -> { A , B } ~~ 2o ) ) |
| 10 | 7 9 | impbid2 | |- ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o <-> A =/= B ) ) |