This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygctb.1 | |- B = ( Base ` G ) |
|
| ghmcyg.1 | |- C = ( Base ` H ) |
||
| Assertion | ghmcyg | |- ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) -> ( G e. CycGrp -> H e. CycGrp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | |- B = ( Base ` G ) |
|
| 2 | ghmcyg.1 | |- C = ( Base ` H ) |
|
| 3 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 4 | 1 3 | iscyg | |- ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) |
| 5 | 4 | simprbi | |- ( G e. CycGrp -> E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) |
| 6 | eqid | |- ( .g ` H ) = ( .g ` H ) |
|
| 7 | ghmgrp2 | |- ( F e. ( G GrpHom H ) -> H e. Grp ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> H e. Grp ) |
| 9 | fof | |- ( F : B -onto-> C -> F : B --> C ) |
|
| 10 | 9 | ad2antlr | |- ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> F : B --> C ) |
| 11 | simprl | |- ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> x e. B ) |
|
| 12 | 10 11 | ffvelcdmd | |- ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> ( F ` x ) e. C ) |
| 13 | simplr | |- ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> F : B -onto-> C ) |
|
| 14 | foeq2 | |- ( ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B -> ( F : ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) -onto-> C <-> F : B -onto-> C ) ) |
|
| 15 | 14 | ad2antll | |- ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> ( F : ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) -onto-> C <-> F : B -onto-> C ) ) |
| 16 | 13 15 | mpbird | |- ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> F : ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) -onto-> C ) |
| 17 | foelrn | |- ( ( F : ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) -onto-> C /\ y e. C ) -> E. z e. ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) y = ( F ` z ) ) |
|
| 18 | 16 17 | sylan | |- ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) -> E. z e. ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) y = ( F ` z ) ) |
| 19 | ovex | |- ( m ( .g ` G ) x ) e. _V |
|
| 20 | 19 | rgenw | |- A. m e. ZZ ( m ( .g ` G ) x ) e. _V |
| 21 | oveq1 | |- ( n = m -> ( n ( .g ` G ) x ) = ( m ( .g ` G ) x ) ) |
|
| 22 | 21 | cbvmptv | |- ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = ( m e. ZZ |-> ( m ( .g ` G ) x ) ) |
| 23 | fveq2 | |- ( z = ( m ( .g ` G ) x ) -> ( F ` z ) = ( F ` ( m ( .g ` G ) x ) ) ) |
|
| 24 | 23 | eqeq2d | |- ( z = ( m ( .g ` G ) x ) -> ( y = ( F ` z ) <-> y = ( F ` ( m ( .g ` G ) x ) ) ) ) |
| 25 | 22 24 | rexrnmptw | |- ( A. m e. ZZ ( m ( .g ` G ) x ) e. _V -> ( E. z e. ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) y = ( F ` z ) <-> E. m e. ZZ y = ( F ` ( m ( .g ` G ) x ) ) ) ) |
| 26 | 20 25 | ax-mp | |- ( E. z e. ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) y = ( F ` z ) <-> E. m e. ZZ y = ( F ` ( m ( .g ` G ) x ) ) ) |
| 27 | 18 26 | sylib | |- ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) -> E. m e. ZZ y = ( F ` ( m ( .g ` G ) x ) ) ) |
| 28 | simp-4l | |- ( ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) /\ m e. ZZ ) -> F e. ( G GrpHom H ) ) |
|
| 29 | simpr | |- ( ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) /\ m e. ZZ ) -> m e. ZZ ) |
|
| 30 | 11 | ad2antrr | |- ( ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) /\ m e. ZZ ) -> x e. B ) |
| 31 | 1 3 6 | ghmmulg | |- ( ( F e. ( G GrpHom H ) /\ m e. ZZ /\ x e. B ) -> ( F ` ( m ( .g ` G ) x ) ) = ( m ( .g ` H ) ( F ` x ) ) ) |
| 32 | 28 29 30 31 | syl3anc | |- ( ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) /\ m e. ZZ ) -> ( F ` ( m ( .g ` G ) x ) ) = ( m ( .g ` H ) ( F ` x ) ) ) |
| 33 | 32 | eqeq2d | |- ( ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) /\ m e. ZZ ) -> ( y = ( F ` ( m ( .g ` G ) x ) ) <-> y = ( m ( .g ` H ) ( F ` x ) ) ) ) |
| 34 | 33 | rexbidva | |- ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) -> ( E. m e. ZZ y = ( F ` ( m ( .g ` G ) x ) ) <-> E. m e. ZZ y = ( m ( .g ` H ) ( F ` x ) ) ) ) |
| 35 | 27 34 | mpbid | |- ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) -> E. m e. ZZ y = ( m ( .g ` H ) ( F ` x ) ) ) |
| 36 | 2 6 8 12 35 | iscygd | |- ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> H e. CycGrp ) |
| 37 | 36 | rexlimdvaa | |- ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) -> ( E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B -> H e. CycGrp ) ) |
| 38 | 5 37 | syl5 | |- ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) -> ( G e. CycGrp -> H e. CycGrp ) ) |