This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the # function on an infinite set. (Contributed by Mario Carneiro, 13-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashinf | |- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. V -> A e. _V ) |
|
| 2 | eldif | |- ( A e. ( _V \ Fin ) <-> ( A e. _V /\ -. A e. Fin ) ) |
|
| 3 | df-hash | |- # = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |
|
| 4 | 3 | reseq1i | |- ( # |` ( _V \ Fin ) ) = ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |` ( _V \ Fin ) ) |
| 5 | resundir | |- ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |` ( _V \ Fin ) ) = ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` ( _V \ Fin ) ) ) |
|
| 6 | disjdif | |- ( Fin i^i ( _V \ Fin ) ) = (/) |
|
| 7 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 8 | eqid | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |
|
| 9 | 7 8 | hashkf | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) : Fin --> NN0 |
| 10 | ffn | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) : Fin --> NN0 -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) Fn Fin ) |
|
| 11 | fnresdisj | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) Fn Fin -> ( ( Fin i^i ( _V \ Fin ) ) = (/) <-> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) = (/) ) ) |
|
| 12 | 9 10 11 | mp2b | |- ( ( Fin i^i ( _V \ Fin ) ) = (/) <-> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) = (/) ) |
| 13 | 6 12 | mpbi | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) = (/) |
| 14 | pnfex | |- +oo e. _V |
|
| 15 | 14 | fconst | |- ( ( _V \ Fin ) X. { +oo } ) : ( _V \ Fin ) --> { +oo } |
| 16 | ffn | |- ( ( ( _V \ Fin ) X. { +oo } ) : ( _V \ Fin ) --> { +oo } -> ( ( _V \ Fin ) X. { +oo } ) Fn ( _V \ Fin ) ) |
|
| 17 | fnresdm | |- ( ( ( _V \ Fin ) X. { +oo } ) Fn ( _V \ Fin ) -> ( ( ( _V \ Fin ) X. { +oo } ) |` ( _V \ Fin ) ) = ( ( _V \ Fin ) X. { +oo } ) ) |
|
| 18 | 15 16 17 | mp2b | |- ( ( ( _V \ Fin ) X. { +oo } ) |` ( _V \ Fin ) ) = ( ( _V \ Fin ) X. { +oo } ) |
| 19 | 13 18 | uneq12i | |- ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` ( _V \ Fin ) ) ) = ( (/) u. ( ( _V \ Fin ) X. { +oo } ) ) |
| 20 | uncom | |- ( (/) u. ( ( _V \ Fin ) X. { +oo } ) ) = ( ( ( _V \ Fin ) X. { +oo } ) u. (/) ) |
|
| 21 | un0 | |- ( ( ( _V \ Fin ) X. { +oo } ) u. (/) ) = ( ( _V \ Fin ) X. { +oo } ) |
|
| 22 | 19 20 21 | 3eqtri | |- ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` ( _V \ Fin ) ) ) = ( ( _V \ Fin ) X. { +oo } ) |
| 23 | 4 5 22 | 3eqtri | |- ( # |` ( _V \ Fin ) ) = ( ( _V \ Fin ) X. { +oo } ) |
| 24 | 23 | fveq1i | |- ( ( # |` ( _V \ Fin ) ) ` A ) = ( ( ( _V \ Fin ) X. { +oo } ) ` A ) |
| 25 | fvres | |- ( A e. ( _V \ Fin ) -> ( ( # |` ( _V \ Fin ) ) ` A ) = ( # ` A ) ) |
|
| 26 | 14 | fvconst2 | |- ( A e. ( _V \ Fin ) -> ( ( ( _V \ Fin ) X. { +oo } ) ` A ) = +oo ) |
| 27 | 24 25 26 | 3eqtr3a | |- ( A e. ( _V \ Fin ) -> ( # ` A ) = +oo ) |
| 28 | 2 27 | sylbir | |- ( ( A e. _V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
| 29 | 1 28 | sylan | |- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |