This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show M e. ZZ . (Contributed by NM, 5-Sep-2005) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluz2 | |- ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 2 | simp1 | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> M e. ZZ ) |
|
| 3 | eluz1 | |- ( M e. ZZ -> ( N e. ( ZZ>= ` M ) <-> ( N e. ZZ /\ M <_ N ) ) ) |
|
| 4 | ibar | |- ( M e. ZZ -> ( ( N e. ZZ /\ M <_ N ) <-> ( M e. ZZ /\ ( N e. ZZ /\ M <_ N ) ) ) ) |
|
| 5 | 3 4 | bitrd | |- ( M e. ZZ -> ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( N e. ZZ /\ M <_ N ) ) ) ) |
| 6 | 3anass | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) <-> ( M e. ZZ /\ ( N e. ZZ /\ M <_ N ) ) ) |
|
| 7 | 5 6 | bitr4di | |- ( M e. ZZ -> ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) ) |
| 8 | 1 2 7 | pm5.21nii | |- ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) |