This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashnncl | |- ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnne0 | |- ( ( # ` A ) e. NN -> ( # ` A ) =/= 0 ) |
|
| 2 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 3 | elnn0 | |- ( ( # ` A ) e. NN0 <-> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
|
| 4 | 2 3 | sylib | |- ( A e. Fin -> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
| 5 | 4 | ord | |- ( A e. Fin -> ( -. ( # ` A ) e. NN -> ( # ` A ) = 0 ) ) |
| 6 | 5 | necon1ad | |- ( A e. Fin -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) |
| 7 | 1 6 | impbid2 | |- ( A e. Fin -> ( ( # ` A ) e. NN <-> ( # ` A ) =/= 0 ) ) |
| 8 | hasheq0 | |- ( A e. Fin -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
|
| 9 | 8 | necon3bid | |- ( A e. Fin -> ( ( # ` A ) =/= 0 <-> A =/= (/) ) ) |
| 10 | 7 9 | bitrd | |- ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |