This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cygctb.1 | |- B = ( Base ` G ) |
|
| Assertion | 0cyg | |- ( ( G e. Grp /\ B ~~ 1o ) -> G e. CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | |- B = ( Base ` G ) |
|
| 2 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 3 | simpl | |- ( ( G e. Grp /\ B ~~ 1o ) -> G e. Grp ) |
|
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | 1 4 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 6 | 5 | adantr | |- ( ( G e. Grp /\ B ~~ 1o ) -> ( 0g ` G ) e. B ) |
| 7 | 0z | |- 0 e. ZZ |
|
| 8 | en1eqsn | |- ( ( ( 0g ` G ) e. B /\ B ~~ 1o ) -> B = { ( 0g ` G ) } ) |
|
| 9 | 5 8 | sylan | |- ( ( G e. Grp /\ B ~~ 1o ) -> B = { ( 0g ` G ) } ) |
| 10 | 9 | eleq2d | |- ( ( G e. Grp /\ B ~~ 1o ) -> ( x e. B <-> x e. { ( 0g ` G ) } ) ) |
| 11 | 10 | biimpa | |- ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> x e. { ( 0g ` G ) } ) |
| 12 | velsn | |- ( x e. { ( 0g ` G ) } <-> x = ( 0g ` G ) ) |
|
| 13 | 11 12 | sylib | |- ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> x = ( 0g ` G ) ) |
| 14 | 1 4 2 | mulg0 | |- ( ( 0g ` G ) e. B -> ( 0 ( .g ` G ) ( 0g ` G ) ) = ( 0g ` G ) ) |
| 15 | 6 14 | syl | |- ( ( G e. Grp /\ B ~~ 1o ) -> ( 0 ( .g ` G ) ( 0g ` G ) ) = ( 0g ` G ) ) |
| 16 | 15 | adantr | |- ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> ( 0 ( .g ` G ) ( 0g ` G ) ) = ( 0g ` G ) ) |
| 17 | 13 16 | eqtr4d | |- ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> x = ( 0 ( .g ` G ) ( 0g ` G ) ) ) |
| 18 | oveq1 | |- ( n = 0 -> ( n ( .g ` G ) ( 0g ` G ) ) = ( 0 ( .g ` G ) ( 0g ` G ) ) ) |
|
| 19 | 18 | rspceeqv | |- ( ( 0 e. ZZ /\ x = ( 0 ( .g ` G ) ( 0g ` G ) ) ) -> E. n e. ZZ x = ( n ( .g ` G ) ( 0g ` G ) ) ) |
| 20 | 7 17 19 | sylancr | |- ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> E. n e. ZZ x = ( n ( .g ` G ) ( 0g ` G ) ) ) |
| 21 | 1 2 3 6 20 | iscygd | |- ( ( G e. Grp /\ B ~~ 1o ) -> G e. CycGrp ) |