This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure of the # function. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashclb | |- ( A e. V -> ( A e. Fin <-> ( # ` A ) e. NN0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 2 | nn0re | |- ( ( # ` A ) e. NN0 -> ( # ` A ) e. RR ) |
|
| 3 | pnfnre | |- +oo e/ RR |
|
| 4 | 3 | neli | |- -. +oo e. RR |
| 5 | hashinf | |- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
|
| 6 | 5 | eleq1d | |- ( ( A e. V /\ -. A e. Fin ) -> ( ( # ` A ) e. RR <-> +oo e. RR ) ) |
| 7 | 4 6 | mtbiri | |- ( ( A e. V /\ -. A e. Fin ) -> -. ( # ` A ) e. RR ) |
| 8 | 7 | ex | |- ( A e. V -> ( -. A e. Fin -> -. ( # ` A ) e. RR ) ) |
| 9 | 8 | con4d | |- ( A e. V -> ( ( # ` A ) e. RR -> A e. Fin ) ) |
| 10 | 2 9 | syl5 | |- ( A e. V -> ( ( # ` A ) e. NN0 -> A e. Fin ) ) |
| 11 | 1 10 | impbid2 | |- ( A e. V -> ( A e. Fin <-> ( # ` A ) e. NN0 ) ) |