This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014) (Proof shortened by AV, 7-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdseq | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( M || N /\ N || M ) ) -> M = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsabseq | |- ( ( M || N /\ N || M ) -> ( abs ` M ) = ( abs ` N ) ) |
|
| 2 | nn0re | |- ( M e. NN0 -> M e. RR ) |
|
| 3 | nn0ge0 | |- ( M e. NN0 -> 0 <_ M ) |
|
| 4 | 2 3 | absidd | |- ( M e. NN0 -> ( abs ` M ) = M ) |
| 5 | 4 | adantr | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( abs ` M ) = M ) |
| 6 | 5 | eqcomd | |- ( ( M e. NN0 /\ N e. NN0 ) -> M = ( abs ` M ) ) |
| 7 | 6 | adantr | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( abs ` M ) = ( abs ` N ) ) -> M = ( abs ` M ) ) |
| 8 | simpr | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( abs ` M ) = ( abs ` N ) ) |
|
| 9 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 10 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
| 11 | 9 10 | absidd | |- ( N e. NN0 -> ( abs ` N ) = N ) |
| 12 | 11 | ad2antlr | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( abs ` N ) = N ) |
| 13 | 7 8 12 | 3eqtrd | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( abs ` M ) = ( abs ` N ) ) -> M = N ) |
| 14 | 1 13 | sylan2 | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( M || N /\ N || M ) ) -> M = N ) |