This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcprmpw2 | |- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. NN ) |
|
| 2 | 1 | nnnn0d | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. NN0 ) |
| 3 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 4 | 3 | ad2antrr | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> P e. NN ) |
| 5 | pccl | |- ( ( P e. Prime /\ A e. NN ) -> ( P pCnt A ) e. NN0 ) |
|
| 6 | 5 | adantr | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. NN0 ) |
| 7 | 4 6 | nnexpcld | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 8 | 7 | nnnn0d | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. NN0 ) |
| 9 | 6 | nn0red | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. RR ) |
| 10 | 9 | leidd | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) <_ ( P pCnt A ) ) |
| 11 | simpll | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> P e. Prime ) |
|
| 12 | 6 | nn0zd | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. ZZ ) |
| 13 | pcid | |- ( ( P e. Prime /\ ( P pCnt A ) e. ZZ ) -> ( P pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt A ) ) |
|
| 14 | 11 12 13 | syl2anc | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt A ) ) |
| 15 | 10 14 | breqtrrd | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) <_ ( P pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 16 | 15 | ad2antrr | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( P pCnt A ) <_ ( P pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 17 | simpr | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> p = P ) |
|
| 18 | 17 | oveq1d | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt A ) = ( P pCnt A ) ) |
| 19 | 17 | oveq1d | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 20 | 16 18 19 | 3brtr4d | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 21 | simplrr | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A || ( P ^ n ) ) |
|
| 22 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 23 | 22 | adantl | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> p e. ZZ ) |
| 24 | 1 | adantr | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A e. NN ) |
| 25 | 24 | nnzd | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A e. ZZ ) |
| 26 | simprl | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> n e. NN0 ) |
|
| 27 | 4 26 | nnexpcld | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ n ) e. NN ) |
| 28 | 27 | adantr | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( P ^ n ) e. NN ) |
| 29 | 28 | nnzd | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( P ^ n ) e. ZZ ) |
| 30 | dvdstr | |- ( ( p e. ZZ /\ A e. ZZ /\ ( P ^ n ) e. ZZ ) -> ( ( p || A /\ A || ( P ^ n ) ) -> p || ( P ^ n ) ) ) |
|
| 31 | 23 25 29 30 | syl3anc | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( ( p || A /\ A || ( P ^ n ) ) -> p || ( P ^ n ) ) ) |
| 32 | 21 31 | mpan2d | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || A -> p || ( P ^ n ) ) ) |
| 33 | simpr | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> p e. Prime ) |
|
| 34 | 11 | adantr | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> P e. Prime ) |
| 35 | simplrl | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> n e. NN0 ) |
|
| 36 | prmdvdsexpr | |- ( ( p e. Prime /\ P e. Prime /\ n e. NN0 ) -> ( p || ( P ^ n ) -> p = P ) ) |
|
| 37 | 33 34 35 36 | syl3anc | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || ( P ^ n ) -> p = P ) ) |
| 38 | 32 37 | syld | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || A -> p = P ) ) |
| 39 | 38 | necon3ad | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p =/= P -> -. p || A ) ) |
| 40 | 39 | imp | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> -. p || A ) |
| 41 | simplr | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> p e. Prime ) |
|
| 42 | 1 | ad2antrr | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> A e. NN ) |
| 43 | pceq0 | |- ( ( p e. Prime /\ A e. NN ) -> ( ( p pCnt A ) = 0 <-> -. p || A ) ) |
|
| 44 | 41 42 43 | syl2anc | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( ( p pCnt A ) = 0 <-> -. p || A ) ) |
| 45 | 40 44 | mpbird | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt A ) = 0 ) |
| 46 | 7 | ad2antrr | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 47 | 41 46 | pccld | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt ( P ^ ( P pCnt A ) ) ) e. NN0 ) |
| 48 | 47 | nn0ge0d | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> 0 <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 49 | 45 48 | eqbrtrd | |- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 50 | 20 49 | pm2.61dane | |- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 51 | 50 | ralrimiva | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 52 | 1 | nnzd | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. ZZ ) |
| 53 | 7 | nnzd | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) |
| 54 | pc2dvds | |- ( ( A e. ZZ /\ ( P ^ ( P pCnt A ) ) e. ZZ ) -> ( A || ( P ^ ( P pCnt A ) ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) ) |
|
| 55 | 52 53 54 | syl2anc | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( A || ( P ^ ( P pCnt A ) ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) ) |
| 56 | 51 55 | mpbird | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A || ( P ^ ( P pCnt A ) ) ) |
| 57 | pcdvds | |- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) || A ) |
|
| 58 | 57 | adantr | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) || A ) |
| 59 | dvdseq | |- ( ( ( A e. NN0 /\ ( P ^ ( P pCnt A ) ) e. NN0 ) /\ ( A || ( P ^ ( P pCnt A ) ) /\ ( P ^ ( P pCnt A ) ) || A ) ) -> A = ( P ^ ( P pCnt A ) ) ) |
|
| 60 | 2 8 56 58 59 | syl22anc | |- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A = ( P ^ ( P pCnt A ) ) ) |
| 61 | 60 | rexlimdvaa | |- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) -> A = ( P ^ ( P pCnt A ) ) ) ) |
| 62 | 3 | adantr | |- ( ( P e. Prime /\ A e. NN ) -> P e. NN ) |
| 63 | 62 5 | nnexpcld | |- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 64 | 63 | nnzd | |- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) |
| 65 | iddvds | |- ( ( P ^ ( P pCnt A ) ) e. ZZ -> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) |
|
| 66 | 64 65 | syl | |- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) |
| 67 | oveq2 | |- ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) |
|
| 68 | 67 | breq2d | |- ( n = ( P pCnt A ) -> ( ( P ^ ( P pCnt A ) ) || ( P ^ n ) <-> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) ) |
| 69 | 68 | rspcev | |- ( ( ( P pCnt A ) e. NN0 /\ ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) -> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) |
| 70 | 5 66 69 | syl2anc | |- ( ( P e. Prime /\ A e. NN ) -> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) |
| 71 | breq1 | |- ( A = ( P ^ ( P pCnt A ) ) -> ( A || ( P ^ n ) <-> ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) ) |
|
| 72 | 71 | rexbidv | |- ( A = ( P ^ ( P pCnt A ) ) -> ( E. n e. NN0 A || ( P ^ n ) <-> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) ) |
| 73 | 70 72 | syl5ibrcom | |- ( ( P e. Prime /\ A e. NN ) -> ( A = ( P ^ ( P pCnt A ) ) -> E. n e. NN0 A || ( P ^ n ) ) ) |
| 74 | 61 73 | impbid | |- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |