This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsexp | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) || ( A ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> A e. ZZ ) |
|
| 2 | uznn0sub | |- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) |
|
| 3 | 2 | 3ad2ant3 | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( N - M ) e. NN0 ) |
| 4 | zexpcl | |- ( ( A e. ZZ /\ ( N - M ) e. NN0 ) -> ( A ^ ( N - M ) ) e. ZZ ) |
|
| 5 | 1 3 4 | syl2anc | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ ( N - M ) ) e. ZZ ) |
| 6 | zexpcl | |- ( ( A e. ZZ /\ M e. NN0 ) -> ( A ^ M ) e. ZZ ) |
|
| 7 | 6 | 3adant3 | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) e. ZZ ) |
| 8 | dvdsmul2 | |- ( ( ( A ^ ( N - M ) ) e. ZZ /\ ( A ^ M ) e. ZZ ) -> ( A ^ M ) || ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) ) |
|
| 9 | 5 7 8 | syl2anc | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) || ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) ) |
| 10 | 1 | zcnd | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> A e. CC ) |
| 11 | simp2 | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> M e. NN0 ) |
|
| 12 | 10 11 3 | expaddd | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ ( ( N - M ) + M ) ) = ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) ) |
| 13 | eluzelcn | |- ( N e. ( ZZ>= ` M ) -> N e. CC ) |
|
| 14 | 13 | 3ad2ant3 | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> N e. CC ) |
| 15 | 11 | nn0cnd | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> M e. CC ) |
| 16 | 14 15 | npcand | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( N - M ) + M ) = N ) |
| 17 | 16 | oveq2d | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ ( ( N - M ) + M ) ) = ( A ^ N ) ) |
| 18 | 12 17 | eqtr3d | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) = ( A ^ N ) ) |
| 19 | 9 18 | breqtrd | |- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) || ( A ^ N ) ) |