This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of an element of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl2.1 | |- X = ( Base ` G ) |
|
| odcl2.2 | |- O = ( od ` G ) |
||
| Assertion | oddvds2 | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) || ( # ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl2.1 | |- X = ( Base ` G ) |
|
| 2 | odcl2.2 | |- O = ( od ` G ) |
|
| 3 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 4 | eqid | |- ( x e. ZZ |-> ( x ( .g ` G ) A ) ) = ( x e. ZZ |-> ( x ( .g ` G ) A ) ) |
|
| 5 | 1 2 3 4 | dfod2 | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) = if ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin , ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) , 0 ) ) |
| 6 | 5 | 3adant2 | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) = if ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin , ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) , 0 ) ) |
| 7 | simp2 | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> X e. Fin ) |
|
| 8 | 1 3 4 | cycsubgcl | |- ( ( G e. Grp /\ A e. X ) -> ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) /\ A e. ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) |
| 9 | 8 | 3adant2 | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) /\ A e. ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) |
| 10 | 9 | simpld | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) ) |
| 11 | 1 | subgss | |- ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) C_ X ) |
| 12 | 10 11 | syl | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) C_ X ) |
| 13 | 7 12 | ssfid | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin ) |
| 14 | 13 | iftrued | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> if ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin , ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) , 0 ) = ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) |
| 15 | 6 14 | eqtrd | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) = ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) ) |
| 16 | 1 | lagsubg | |- ( ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) || ( # ` X ) ) |
| 17 | 10 7 16 | syl2anc | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( # ` ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) ) || ( # ` X ) ) |
| 18 | 15 17 | eqbrtrd | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) || ( # ` X ) ) |