This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a group element is always a nonnegative integer. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| Assertion | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | eqid | |- { y e. NN | ( y ( .g ` G ) A ) = ( 0g ` G ) } = { y e. NN | ( y ( .g ` G ) A ) = ( 0g ` G ) } |
|
| 6 | 1 3 4 2 5 | odlem1 | |- ( A e. X -> ( ( ( O ` A ) = 0 /\ { y e. NN | ( y ( .g ` G ) A ) = ( 0g ` G ) } = (/) ) \/ ( O ` A ) e. { y e. NN | ( y ( .g ` G ) A ) = ( 0g ` G ) } ) ) |
| 7 | simpl | |- ( ( ( O ` A ) = 0 /\ { y e. NN | ( y ( .g ` G ) A ) = ( 0g ` G ) } = (/) ) -> ( O ` A ) = 0 ) |
|
| 8 | elrabi | |- ( ( O ` A ) e. { y e. NN | ( y ( .g ` G ) A ) = ( 0g ` G ) } -> ( O ` A ) e. NN ) |
|
| 9 | 7 8 | orim12i | |- ( ( ( ( O ` A ) = 0 /\ { y e. NN | ( y ( .g ` G ) A ) = ( 0g ` G ) } = (/) ) \/ ( O ` A ) e. { y e. NN | ( y ( .g ` G ) A ) = ( 0g ` G ) } ) -> ( ( O ` A ) = 0 \/ ( O ` A ) e. NN ) ) |
| 10 | 6 9 | syl | |- ( A e. X -> ( ( O ` A ) = 0 \/ ( O ` A ) e. NN ) ) |
| 11 | 10 | orcomd | |- ( A e. X -> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
| 12 | elnn0 | |- ( ( O ` A ) e. NN0 <-> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
|
| 13 | 11 12 | sylibr | |- ( A e. X -> ( O ` A ) e. NN0 ) |