This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscygodd.1 | |- B = ( Base ` G ) |
|
| iscygodd.o | |- O = ( od ` G ) |
||
| iscygodd.3 | |- ( ph -> G e. Grp ) |
||
| iscygodd.4 | |- ( ph -> X e. B ) |
||
| iscygodd.5 | |- ( ph -> ( O ` X ) = ( # ` B ) ) |
||
| Assertion | iscygodd | |- ( ph -> G e. CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscygodd.1 | |- B = ( Base ` G ) |
|
| 2 | iscygodd.o | |- O = ( od ` G ) |
|
| 3 | iscygodd.3 | |- ( ph -> G e. Grp ) |
|
| 4 | iscygodd.4 | |- ( ph -> X e. B ) |
|
| 5 | iscygodd.5 | |- ( ph -> ( O ` X ) = ( # ` B ) ) |
|
| 6 | 1 2 | odcl | |- ( X e. B -> ( O ` X ) e. NN0 ) |
| 7 | 4 6 | syl | |- ( ph -> ( O ` X ) e. NN0 ) |
| 8 | 5 7 | eqeltrrd | |- ( ph -> ( # ` B ) e. NN0 ) |
| 9 | 1 | fvexi | |- B e. _V |
| 10 | hashclb | |- ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) |
|
| 11 | 9 10 | ax-mp | |- ( B e. Fin <-> ( # ` B ) e. NN0 ) |
| 12 | 8 11 | sylibr | |- ( ph -> B e. Fin ) |
| 13 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 14 | eqid | |- { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } = { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } |
|
| 15 | 1 13 14 2 | cyggenod | |- ( ( G e. Grp /\ B e. Fin ) -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) |
| 16 | 3 12 15 | syl2anc | |- ( ph -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) |
| 17 | 4 5 16 | mpbir2and | |- ( ph -> X e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) |
| 18 | 17 | ne0d | |- ( ph -> { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) |
| 19 | 1 13 14 | iscyg2 | |- ( G e. CycGrp <-> ( G e. Grp /\ { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) ) |
| 20 | 3 18 19 | sylanbrc | |- ( ph -> G e. CycGrp ) |