This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Fan Zheng, 16-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2prm | |- 2 e. Prime |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | |- 2 e. ZZ |
|
| 2 | 1lt2 | |- 1 < 2 |
|
| 3 | eluz2b1 | |- ( 2 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 1 < 2 ) ) |
|
| 4 | 1 2 3 | mpbir2an | |- 2 e. ( ZZ>= ` 2 ) |
| 5 | ral0 | |- A. z e. (/) -. z || 2 |
|
| 6 | fzssuz | |- ( 2 ... ( 2 - 1 ) ) C_ ( ZZ>= ` 2 ) |
|
| 7 | dfss2 | |- ( ( 2 ... ( 2 - 1 ) ) C_ ( ZZ>= ` 2 ) <-> ( ( 2 ... ( 2 - 1 ) ) i^i ( ZZ>= ` 2 ) ) = ( 2 ... ( 2 - 1 ) ) ) |
|
| 8 | 6 7 | mpbi | |- ( ( 2 ... ( 2 - 1 ) ) i^i ( ZZ>= ` 2 ) ) = ( 2 ... ( 2 - 1 ) ) |
| 9 | uzdisj | |- ( ( 2 ... ( 2 - 1 ) ) i^i ( ZZ>= ` 2 ) ) = (/) |
|
| 10 | 8 9 | eqtr3i | |- ( 2 ... ( 2 - 1 ) ) = (/) |
| 11 | 10 | raleqi | |- ( A. z e. ( 2 ... ( 2 - 1 ) ) -. z || 2 <-> A. z e. (/) -. z || 2 ) |
| 12 | 5 11 | mpbir | |- A. z e. ( 2 ... ( 2 - 1 ) ) -. z || 2 |
| 13 | isprm3 | |- ( 2 e. Prime <-> ( 2 e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( 2 - 1 ) ) -. z || 2 ) ) |
|
| 14 | 4 12 13 | mpbir2an | |- 2 e. Prime |