This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexex.1 | |- X = ( Base ` G ) |
|
| gexex.2 | |- E = ( gEx ` G ) |
||
| Assertion | gex2abl | |- ( ( G e. Grp /\ E || 2 ) -> G e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexex.1 | |- X = ( Base ` G ) |
|
| 2 | gexex.2 | |- E = ( gEx ` G ) |
|
| 3 | 1 | a1i | |- ( ( G e. Grp /\ E || 2 ) -> X = ( Base ` G ) ) |
| 4 | eqidd | |- ( ( G e. Grp /\ E || 2 ) -> ( +g ` G ) = ( +g ` G ) ) |
|
| 5 | simpl | |- ( ( G e. Grp /\ E || 2 ) -> G e. Grp ) |
|
| 6 | simp1l | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> G e. Grp ) |
|
| 7 | simp2 | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> x e. X ) |
|
| 8 | simp3 | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> y e. X ) |
|
| 9 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 10 | 1 9 | grpass | |- ( ( G e. Grp /\ ( x e. X /\ y e. X /\ y e. X ) ) -> ( ( x ( +g ` G ) y ) ( +g ` G ) y ) = ( x ( +g ` G ) ( y ( +g ` G ) y ) ) ) |
| 11 | 6 7 8 8 10 | syl13anc | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( ( x ( +g ` G ) y ) ( +g ` G ) y ) = ( x ( +g ` G ) ( y ( +g ` G ) y ) ) ) |
| 12 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 13 | 1 12 9 | mulg2 | |- ( y e. X -> ( 2 ( .g ` G ) y ) = ( y ( +g ` G ) y ) ) |
| 14 | 8 13 | syl | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( 2 ( .g ` G ) y ) = ( y ( +g ` G ) y ) ) |
| 15 | simp1r | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> E || 2 ) |
|
| 16 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 17 | 1 2 12 16 | gexdvdsi | |- ( ( G e. Grp /\ y e. X /\ E || 2 ) -> ( 2 ( .g ` G ) y ) = ( 0g ` G ) ) |
| 18 | 6 8 15 17 | syl3anc | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( 2 ( .g ` G ) y ) = ( 0g ` G ) ) |
| 19 | 14 18 | eqtr3d | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( y ( +g ` G ) y ) = ( 0g ` G ) ) |
| 20 | 19 | oveq2d | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( x ( +g ` G ) ( y ( +g ` G ) y ) ) = ( x ( +g ` G ) ( 0g ` G ) ) ) |
| 21 | 1 9 16 | grprid | |- ( ( G e. Grp /\ x e. X ) -> ( x ( +g ` G ) ( 0g ` G ) ) = x ) |
| 22 | 6 7 21 | syl2anc | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( x ( +g ` G ) ( 0g ` G ) ) = x ) |
| 23 | 11 20 22 | 3eqtrd | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( ( x ( +g ` G ) y ) ( +g ` G ) y ) = x ) |
| 24 | 23 | oveq1d | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( ( ( x ( +g ` G ) y ) ( +g ` G ) y ) ( +g ` G ) x ) = ( x ( +g ` G ) x ) ) |
| 25 | 1 12 9 | mulg2 | |- ( x e. X -> ( 2 ( .g ` G ) x ) = ( x ( +g ` G ) x ) ) |
| 26 | 7 25 | syl | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( 2 ( .g ` G ) x ) = ( x ( +g ` G ) x ) ) |
| 27 | 1 2 12 16 | gexdvdsi | |- ( ( G e. Grp /\ x e. X /\ E || 2 ) -> ( 2 ( .g ` G ) x ) = ( 0g ` G ) ) |
| 28 | 6 7 15 27 | syl3anc | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( 2 ( .g ` G ) x ) = ( 0g ` G ) ) |
| 29 | 24 26 28 | 3eqtr2d | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( ( ( x ( +g ` G ) y ) ( +g ` G ) y ) ( +g ` G ) x ) = ( 0g ` G ) ) |
| 30 | 1 9 | grpcl | |- ( ( G e. Grp /\ x e. X /\ y e. X ) -> ( x ( +g ` G ) y ) e. X ) |
| 31 | 6 7 8 30 | syl3anc | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( x ( +g ` G ) y ) e. X ) |
| 32 | 1 2 12 16 | gexdvdsi | |- ( ( G e. Grp /\ ( x ( +g ` G ) y ) e. X /\ E || 2 ) -> ( 2 ( .g ` G ) ( x ( +g ` G ) y ) ) = ( 0g ` G ) ) |
| 33 | 6 31 15 32 | syl3anc | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( 2 ( .g ` G ) ( x ( +g ` G ) y ) ) = ( 0g ` G ) ) |
| 34 | 1 12 9 | mulg2 | |- ( ( x ( +g ` G ) y ) e. X -> ( 2 ( .g ` G ) ( x ( +g ` G ) y ) ) = ( ( x ( +g ` G ) y ) ( +g ` G ) ( x ( +g ` G ) y ) ) ) |
| 35 | 31 34 | syl | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( 2 ( .g ` G ) ( x ( +g ` G ) y ) ) = ( ( x ( +g ` G ) y ) ( +g ` G ) ( x ( +g ` G ) y ) ) ) |
| 36 | 29 33 35 | 3eqtr2d | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( ( ( x ( +g ` G ) y ) ( +g ` G ) y ) ( +g ` G ) x ) = ( ( x ( +g ` G ) y ) ( +g ` G ) ( x ( +g ` G ) y ) ) ) |
| 37 | 1 9 | grpass | |- ( ( G e. Grp /\ ( ( x ( +g ` G ) y ) e. X /\ y e. X /\ x e. X ) ) -> ( ( ( x ( +g ` G ) y ) ( +g ` G ) y ) ( +g ` G ) x ) = ( ( x ( +g ` G ) y ) ( +g ` G ) ( y ( +g ` G ) x ) ) ) |
| 38 | 6 31 8 7 37 | syl13anc | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( ( ( x ( +g ` G ) y ) ( +g ` G ) y ) ( +g ` G ) x ) = ( ( x ( +g ` G ) y ) ( +g ` G ) ( y ( +g ` G ) x ) ) ) |
| 39 | 36 38 | eqtr3d | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( ( x ( +g ` G ) y ) ( +g ` G ) ( x ( +g ` G ) y ) ) = ( ( x ( +g ` G ) y ) ( +g ` G ) ( y ( +g ` G ) x ) ) ) |
| 40 | 1 9 | grpcl | |- ( ( G e. Grp /\ y e. X /\ x e. X ) -> ( y ( +g ` G ) x ) e. X ) |
| 41 | 6 8 7 40 | syl3anc | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( y ( +g ` G ) x ) e. X ) |
| 42 | 1 9 | grplcan | |- ( ( G e. Grp /\ ( ( x ( +g ` G ) y ) e. X /\ ( y ( +g ` G ) x ) e. X /\ ( x ( +g ` G ) y ) e. X ) ) -> ( ( ( x ( +g ` G ) y ) ( +g ` G ) ( x ( +g ` G ) y ) ) = ( ( x ( +g ` G ) y ) ( +g ` G ) ( y ( +g ` G ) x ) ) <-> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
| 43 | 6 31 41 31 42 | syl13anc | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( ( ( x ( +g ` G ) y ) ( +g ` G ) ( x ( +g ` G ) y ) ) = ( ( x ( +g ` G ) y ) ( +g ` G ) ( y ( +g ` G ) x ) ) <-> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
| 44 | 39 43 | mpbid | |- ( ( ( G e. Grp /\ E || 2 ) /\ x e. X /\ y e. X ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 45 | 3 4 5 44 | isabld | |- ( ( G e. Grp /\ E || 2 ) -> G e. Abel ) |